Theory of Computing Systems

, Volume 43, Issue 1, pp 67–80 | Cite as

Speed Scaling of Tasks with Precedence Constraints

  • Kirk Pruhs
  • Rob van Stee
  • Patchrawat Uthaisombut


We consider the problem of speed scaling to conserve energy in a multiprocessor setting where there are precedence constraints between tasks, and where the performance measure is the makespan. That is, we consider an energy bounded version of the classic problem Pm | prec | C max . We extend the standard 3-field notation and denote this problem as Sm | prec, energy | C max . We show that, without loss of generality, one need only consider constant power schedules. We then show how to reduce this problem to the problem Qm | prec | C max  to obtain a poly-log(m)-approximation algorithm.


Completion Time Optimal Schedule Binary Search Power Equality Precedence Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Azar, Y., Woeginger, G., Yadid, T.: Approximation schemes for scheduling on parallel machines. J. Sched. 1(1), 55–66 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bansal, N., Pruhs, K.: Speed scaling to manage temperature. In: Symposium on Theoretical Aspects of Computer Science, pp. 460–471 (2005) Google Scholar
  3. 3.
    Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. In: IEEE Symposium on Foundations of Computer Science, pp. 520–529 (2004) Google Scholar
  4. 4.
    Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000) CrossRefGoogle Scholar
  5. 5.
    Chekuri, C., Bender, M.A.: An efficient approximation algorithm for minimizing makespan on uniformly related machines. J. Algorithms 41, 212–224 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, J.-J., Kuo, T.-W., Lu, H.-I.: Power-saving scheduling for weakly dynamic voltage scaling devices. In: Workshop on Algorithms and Data Structures, pp. 338–349 (2005) Google Scholar
  7. 7.
    Chudak, F.A., Shmoys, D.B.: Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. J. Algorithms 30(2), 323–343 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Graham, R.L.: Bounds for certain multiprocessor anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966) Google Scholar
  9. 9.
    Graham, R.L., Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979) zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gruian, F., Kuchcinski, K.: Lenes: task-scheduling for low-energy systems using variable voltage processors. In: Asia South Pacific—Design Automation Conference, pp. 449–455 (2001) Google Scholar
  11. 11.
    Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News 32(2), 63–76 (2005) CrossRefGoogle Scholar
  12. 12.
    Kwon, W.-C., Kim, T.: Optimal voltage allocation techniques for dynamically variable voltage processors. ACM Trans. Embed. Comput. Syst. (TECS) 4(1), 211–230 (2005) CrossRefGoogle Scholar
  13. 13.
    Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks. In: 11th International Computing and Combinatorics Conference (COCOON 2005), pp. 283–296 (2005) Google Scholar
  14. 14.
    Luo, J., Jha, N.K.: Power-conscious joint scheduling of periodic task graphs and aperiodic task graphs in distributed real-time embedded systems. In: International Conference on Computer Aided Design, pp. 357–364 (2000) Google Scholar
  15. 15.
    Mishra, R., Rastogi, N., Zhu, D., Mossé, D., Melhem, R.G.: Energy aware scheduling for distributed real-time systems. In: International Parallel and Distributed Processing Symposium, p. 21 (2003) Google Scholar
  16. 16.
    Mudge, T.: Power: a first-class architectural design constraint. Computer 34(4), 52–58 (2001) CrossRefGoogle Scholar
  17. 17.
    Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg. In: Scandinavian Workshop on Algorithms and Theory, pp. 14–25 (2004) Google Scholar
  18. 18.
    Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy. In: IEEE Symposium on Foundations of Computer Science (FOCS 1995), pp. 374–382 (1995) Google Scholar
  19. 19.
    Yun, H.-S., Kim, J.: On energy-optimal voltage scheduling for fixed priority hard real-time systems. ACM Trans. Embed. Comput. Syst. 2(3), 393–430 (2003) CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Hu, X., Chen, D.Z.: Task scheduling and voltage selection for energy minimization. In: Design Automation Conference, pp. 183–188 (2002) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kirk Pruhs
    • 1
  • Rob van Stee
    • 2
  • Patchrawat Uthaisombut
    • 1
  1. 1.Computer Science DepartmentUniversity of PittsburghPittsburghUSA
  2. 2.Fakultät für InformatikUniversität KarlsruheKarlsruheGermany

Personalised recommendations