Division Safe Calculation in Totalised Fields
Open Access
ArticleFirst Online:
- 187 Downloads
- 2 Citations
Abstract
A 0-totalised field is a field in which division is a total operation with 0−1=0. Equational reasoning in such fields is greatly simplified but in deriving a term one still wishes to know whether or not the calculation has invoked 0−1. If it has not then we call the derivation division safe. We propose three methods of guaranteeing division safe calculations in 0-totalised fields.
Keywords
Rational number Meadow Zero totalised field Elementary algebraic specification Download
to read the full article text
References
- 1.Bergstra, J.A.: Elementary algebraic specifications of the rational function field. In: Beckmann, A., et al. (eds.) Logical Approaches to Computational Barriers. Proceedings of Computability in Europe 2006. Lecture Notes in Computer Science, vol. 3988, pp. 40–54. Springer, New York (2006) CrossRefGoogle Scholar
- 2.Bergstra, J.A., Tucker, J.V.: The completeness of the algebraic specification methods for data types. Inf. Control 54, 186–200 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
- 3.Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type specifications: two characterisation theorems. SIAM J. Comput. 12, 366–387 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Bergstra, J.A., Tucker, J.V.: Algebraic specifications of computable and semicomputable data types. Theor. Comput. Sci. 50, 137–181 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Bergstra, J.A., Tucker, J.V.: Equational specifications, complete term rewriting systems, and computable and semicomputable algebras. J. ACM 42, 1194–1230 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Bergstra, J.A., Tucker, J.V.: The data type variety of stack algebras. Ann. Pure Appl. Log. 73, 11–36 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Bergstra, J.A., Tucker, J.V.: Elementary algebraic specifications of the rational complex numbers. In: Futatsugi, K., et al. (eds.) Algebra, Meaning and Computation. Goguen Festschrift. Lecture Notes in Computer Science, vol. 4060, pp. 459–475. Springer, New York (2006) CrossRefGoogle Scholar
- 8.Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. J. ACM 54(2), Article 7 (April 2007), 25 pages Google Scholar
- 9.Calkin, N., Wilf, H.S.: Recounting the rationals. Am. Math. Mon. 107, 360–363 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
- 10.Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Yeh, R.T. (ed.) Current Trends in Programming Methodology. IV. Data Structuring, pp. 80–149. Prentice-Hall, Englewood Cliffs (1978) Google Scholar
- 11.Hirschfeld, Y.: Personal communication (August 2006) Google Scholar
- 12.Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993) zbMATHGoogle Scholar
- 13.Kamin, S.: Some definitions for algebraic data type specifications. SIGLAN Not. 14(3), 28 (1979) CrossRefMathSciNetGoogle Scholar
- 14.Meinke, K., Tucker, J.V.: Universal algebra. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science. Mathematical Structures, vol. I, pp. 189–411. Oxford University Press, Oxford (1992) Google Scholar
- 15.Meseguer, J., Goguen, J.A.: Initiality, induction, and computability. In: Nivat, M. (ed.) Algebraic Methods in Semantics, pp. 459–541. Cambridge University Press, Cambridge (1986) Google Scholar
- 16.Moss, L.: Simple equational specifications of rational arithmetic. Discret. Math. Theor. Comput. Sci. 4, 291–300 (2001) zbMATHMathSciNetGoogle Scholar
- 17.Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science. Semantic Modelling, vol. IV, pp. 357–526. Oxford University Press, Oxford (1995) Google Scholar
- 18.Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor, E. (ed.) Handbook of Computability Theory, pp. 363–447. Elsevier, Amsterdam (1999) CrossRefGoogle Scholar
- 19.Terese, K.: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003) Google Scholar
- 20.Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs in Computer Science. Springer, New York (1992) zbMATHGoogle Scholar
- 21.Wirsing, M.: Algebraic specifications. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, pp. 675–788. North-Holland, Amsterdam (1990) Google Scholar
Copyright information
© Springer Science+Business Media, LLC 2007