Advertisement

Theory of Computing Systems

, Volume 44, Issue 1, pp 82–90 | Cite as

The Complexity of Deciding if a Boolean Function Can Be Computed by Circuits over a Restricted Basis

  • Heribert VollmerEmail author
Article

Abstract

We study the complexity of the following algorithmic problem: Given a Boolean function f and a finite set of Boolean functions B, decide if there is a circuit with basis B that computes f. We show that if both f and all functions in B are given by their truth-table, the problem is in quasipolynomial-size AC0, and thus cannot be hard for AC0(2) or any superclass like NC1, L, or NL. This answers an open question by Bergman and Slutzki (SIAM J. Comput., 2000). Furthermore we show that, if the input functions are not given by their truth-table but in a succinct way, i.e., by circuits (over any complete basis), the above problem becomes complete for the class coNP.

Keywords

Boolean circuit Post’s lattice Clones Membership problem Computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergman, C., Slutzki, G.: Complexity of some problems concerning varieties and quasi-varieties of algebras. SIAM J. Comput. 30(2), 359–382 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bergmann, C., Juedes, D., Slutzki, G.: Computational complexity of term equivalence. Int. J. Algebra Comput. 9, 113–128 (1999) CrossRefGoogle Scholar
  3. 3.
    Böhler, E., Schnoor, H.: The complexity of the descriptiveness of boolean circuits over different sets of gates. Theory Comput. Syst. (2007, to appear) Google Scholar
  4. 4.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. ACM-SIGACT Newsl. 34(4), 38–52 (2003) CrossRefGoogle Scholar
  5. 5.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: constraint satisfaction problems. ACM-SIGACT Newsl. 35(1), 22–35 (2004) CrossRefGoogle Scholar
  6. 6.
    Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96, 59–66 (2005) CrossRefGoogle Scholar
  7. 7.
    Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. J. Comput. Syst. Sci. 57, 200–212 (1998) zbMATHCrossRefGoogle Scholar
  8. 8.
    Cohn, P.M.: Universal Algebra. Harper’s Series in Modern Mathematics. Harper & Row, New York (1965) zbMATHGoogle Scholar
  9. 9.
    Håstad, J.: Computational Limitations of Small Depth Circuits. MIT Press, Cambridge (1988) Google Scholar
  10. 10.
    Hertrampf, U., Lautemann, C., Schwentick, T., Vollmer, H., Wagner, K.W.: On the power of polynomial time bit-reductions. In: Proceedings 8th Structure in Complexity Theory, pp. 200–207 (1993) Google Scholar
  11. 11.
    Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999) zbMATHGoogle Scholar
  12. 12.
    Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  13. 13.
    Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979) Google Scholar
  14. 14.
    Post, E.L.: Determination of all closed systems of truth tables. Bull. Am. Math. Soc. 26, 437 (1920) Google Scholar
  15. 15.
    Post, E.L.: Introduction to a general theory of elementary propositions. Am. J. Math. 43, 163–185 (1921) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Post, E.L.: The two-valued iterative systems of mathematical logic. Ann. Math. Stud. 5, 1–122 (1941) MathSciNetGoogle Scholar
  17. 17.
    Szendrei, Á: Clones in Universal Algebra. Séminaire de mathématiques supérieures, NATO Advanced Study Institute. Les Presses de l’Université de Montréal, Montréal (1986) Google Scholar
  18. 18.
    Veith, H.: Succinct representation, leaf languages, and projection reductions. Inf. Comput. 142, 207–236 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Vollmer, H.: Relating polynomial time to constant depth. Theor. Comput. Sci. 207, 159–170 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vollmer, H.: Introduction to Circuit Complexity—A Uniform Approach. Texts in Theoretical Computer Science. Springer, Berlin (1999) Google Scholar
  21. 21.
    Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science. B.G. Teubner & Wiley, Stuttgart (1987) zbMATHGoogle Scholar
  22. 22.
    Yao, A.C.C.: Separating the polynomial-time hierarchy by oracles. In: Proceedings 26th Foundations of Computer Science, pp. 1–10. IEEE Computer Society Press (1985) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Theoretische InformatikUniversität HannoverHannoverGermany

Personalised recommendations