Theory of Computing Systems

, Volume 43, Issue 2, pp 204–233 | Cite as

On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction

  • Leonid Khachiyan
  • Endre Boros
  • Konrad Borys
  • Khaled Elbassioni
  • Vladimir Gurvich
  • Gabor Rudolf
  • Jihui Zhao
Open Access


Given a directed graph G=(V,A) with a non-negative weight (length) function on its arcs w:A→ℝ+ and two terminals s,tV, our goal is to destroy all short directed paths from s to t in G by eliminating some arcs of A. This is known as the short paths interdiction problem. We consider several versions of it, and in each case analyze two subcases: total limited interdiction, when a fixed number k of arcs can be removed, and node-wise limited interdiction, when for each node vV a fixed number k(v) of out-going arcs can be removed. Our results indicate that the latter subcase is always easier than the former one. In particular, we show that the short paths node-wise interdiction problem can be efficiently solved by an extension of Dijkstra’s algorithm. In contrast, the short paths total interdiction problem is known to be NP-hard. We strengthen this hardness result by deriving the following inapproximability bounds: Given k, it is NP-hard to approximate within a factor c<2 the maximum st distance d(s,t) obtainable by removing (at most) k arcs from G. Furthermore, given d, it is NP-hard to approximate within a factor \(c<10\sqrt{5}-21\approx1.36\) the minimum number of arcs which has to be removed to guarantee d(s,t)≥d. Finally, we also show that the same inapproximability bounds hold for undirected graphs and/or node elimination.


Approximation algorithm Dijkstra’s algorithm Most vital arcs problem Cyclic game Maxmin mean cycle Minimal vertex cover Network inhibition Network interdiction 


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, New Jersey (1993) Google Scholar
  2. 2.
    Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the most vital arcs in a network. Oper. Res. Lett. 8, 73–76 (1989) CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes. Technical Report CS-TR-3539, University of Maryland, Institute of Advanced Computer Studies, College Park, MD (1995) Google Scholar
  4. 4.
    Beffara, E., Vorobyov, S.: Adapting Gurvich-Karzanov-Khachiyan’s algorithm for parity games: implementation and experimentation. Technical Report 020, Department of Information Technology, Uppsala University (2001) (available at
  5. 5.
    Beffara, E., Vorobyov, S.: Is randomized Gurvich-Karzanov-Khachiyan’s algorithm for parity games polynomial? Technical Report 025, Department of Information Technology, Uppsala University (2001) (available at
  6. 6.
    Björklund, H., Sandberg, S., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discret. Appl. Math. 155(2), 210–229 (2007) CrossRefzbMATHGoogle Scholar
  7. 7.
    Clementi, A.E.F., Crescenzi, P., Rossi, G.: On the complexity of approximating colored-graph problems. In: COCOON, pp. 281–290 (1999) Google Scholar
  8. 8.
    Corely, H.W., Shaw, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1, 157–160 (1982) CrossRefGoogle Scholar
  9. 9.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439–485 (2005) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Mycielski, J.: Positional games over a graph. Not. Am. Math. Soc. 20, A-334 (1973) Google Scholar
  11. 11.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8, 109–113 (1979) CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Math. Program. 13, 116–118 (1977) CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Gallai, T.: Maximum-minimum Sätze über Graphen. Acta Math. Acad. Sci. Hung. 9, 395–434 (1958) CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979) zbMATHGoogle Scholar
  16. 16.
    Ghare, P.M., Montgomery, D.C., Turner, T.M.: Optimal interdiction policy for a flow network. Nav. Res. Logist. Q. 18, 37–45 (1971) CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Golden, B.L.: A problem in network interdiction. Nav. Res. Logist. Q. 25, 711–713 (1978) CrossRefzbMATHGoogle Scholar
  18. 18.
    Goldschlager, L.M.: The monotone and planar circuit value problem are log space complete for P. SIGACT News 9(2), 25–29 (1977) CrossRefGoogle Scholar
  19. 19.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, Oxford (1995) zbMATHGoogle Scholar
  20. 20.
    Gurvich, V., Karzanov, A., Khachiyan, L.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Comput. Math. Math. Phys. 28, 85–91 (1988) CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Håstad, J.: Some optimal inapproximability results. In: STOC ’97: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 1–10. ACM Press (1997) Google Scholar
  22. 22.
    Israely, E., Wood, K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: SODA 2006, pp. 117–123 Google Scholar
  24. 24.
    Karakostas, G.: A better approximation ratio for the vertex cover problem. In: ICALP, pp. 1043–1050 (2005) Google Scholar
  25. 25.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972) Google Scholar
  26. 26.
    Karp, R.: A characterization of the minimum cycle mean in a digraph. Discret. Math. 23, 309–311 (1978) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Karzanov, A.V., Lebedev, V.N.: Cyclical games with prohibition. Math. Program. 60, 277–293 (1993) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Malik, K., Mittal, A.K., Gupta, S.K.: The k most vital arcs in the shortest path problem. Oper. Res. Lett. 8, 223–227 (1989) CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    McMasters, A.W., Mustin, T.M.: Optimal interdiction of a supply networks. Nav. Res. Logist. Q. 17, 261–268 (1970) CrossRefzbMATHGoogle Scholar
  30. 30.
    Moulin, H.: Prolongement des jeux à deux joueurs de somme nulle. Bull. Soc. Math. France, Memoire 45 (1976) Google Scholar
  31. 31.
    Moulin, H.: Extension of two person zero sum games. J. Math. Anal. Appl. 55(2), 490–507 (1976) CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Phillips, C.A.: The network inhibition problem. In: Proceedings of the 25th Annual ACM Symposium on the Theory of Computing, pp. 776–785 (1993) Google Scholar
  33. 33.
    Pisaruk, N.N.: Mean cost cyclical games. Math. Oper. Res. 24(4), 817–828 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Poljak, S.: A note on the stable sets and coloring of graphs. Comment. Math. Univ. Carol. 15, 307–309 (1974) MathSciNetzbMATHGoogle Scholar
  35. 35.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, New York (2003) zbMATHGoogle Scholar
  36. 36.
    Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001) Google Scholar
  37. 37.
    Wagner, D.K.: Disjoint (s,t)-cuts in a network. Networks 20, 361–371 (1990) CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Washburn, A., Wood, K.: Two-person zero-sum games for network interdiction. Oper. Res. 43(2), 243–251 (1995) MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17, 1–18 (1993) CrossRefzbMATHGoogle Scholar
  40. 40.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1–2), 343–359 (1996) CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Leonid Khachiyan
  • Endre Boros
    • 1
  • Konrad Borys
    • 1
  • Khaled Elbassioni
    • 2
  • Vladimir Gurvich
    • 1
  • Gabor Rudolf
    • 1
  • Jihui Zhao
    • 3
  1. 1.RUTCORRutgers UniversityPiscatawayUSA
  2. 2.Max-Planck-Institüt für InformatikSaarbrückenGermany
  3. 3.Department of Computer ScienceRutgers UniversityPiscatawayUSA

Personalised recommendations