Advertisement

Theory of Computing Systems

, Volume 43, Issue 2, pp 204–233 | Cite as

On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction

  • Leonid Khachiyan
  • Endre Boros
  • Konrad Borys
  • Khaled Elbassioni
  • Vladimir Gurvich
  • Gabor Rudolf
  • Jihui Zhao
Open Access
Article

Abstract

Given a directed graph G=(V,A) with a non-negative weight (length) function on its arcs w:A→ℝ+ and two terminals s,tV, our goal is to destroy all short directed paths from s to t in G by eliminating some arcs of A. This is known as the short paths interdiction problem. We consider several versions of it, and in each case analyze two subcases: total limited interdiction, when a fixed number k of arcs can be removed, and node-wise limited interdiction, when for each node vV a fixed number k(v) of out-going arcs can be removed. Our results indicate that the latter subcase is always easier than the former one. In particular, we show that the short paths node-wise interdiction problem can be efficiently solved by an extension of Dijkstra’s algorithm. In contrast, the short paths total interdiction problem is known to be NP-hard. We strengthen this hardness result by deriving the following inapproximability bounds: Given k, it is NP-hard to approximate within a factor c<2 the maximum st distance d(s,t) obtainable by removing (at most) k arcs from G. Furthermore, given d, it is NP-hard to approximate within a factor \(c<10\sqrt{5}-21\approx1.36\) the minimum number of arcs which has to be removed to guarantee d(s,t)≥d. Finally, we also show that the same inapproximability bounds hold for undirected graphs and/or node elimination.

Keywords

Approximation algorithm Dijkstra’s algorithm Most vital arcs problem Cyclic game Maxmin mean cycle Minimal vertex cover Network inhibition Network interdiction 

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, New Jersey (1993) Google Scholar
  2. 2.
    Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the most vital arcs in a network. Oper. Res. Lett. 8, 73–76 (1989) CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes. Technical Report CS-TR-3539, University of Maryland, Institute of Advanced Computer Studies, College Park, MD (1995) Google Scholar
  4. 4.
    Beffara, E., Vorobyov, S.: Adapting Gurvich-Karzanov-Khachiyan’s algorithm for parity games: implementation and experimentation. Technical Report 020, Department of Information Technology, Uppsala University (2001) (available at http://www.it.uu.se/research/reports/#2001)
  5. 5.
    Beffara, E., Vorobyov, S.: Is randomized Gurvich-Karzanov-Khachiyan’s algorithm for parity games polynomial? Technical Report 025, Department of Information Technology, Uppsala University (2001) (available at http://www.it.uu.se/research/reports/#2001)
  6. 6.
    Björklund, H., Sandberg, S., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discret. Appl. Math. 155(2), 210–229 (2007) CrossRefzbMATHGoogle Scholar
  7. 7.
    Clementi, A.E.F., Crescenzi, P., Rossi, G.: On the complexity of approximating colored-graph problems. In: COCOON, pp. 281–290 (1999) Google Scholar
  8. 8.
    Corely, H.W., Shaw, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1, 157–160 (1982) CrossRefGoogle Scholar
  9. 9.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 439–485 (2005) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Mycielski, J.: Positional games over a graph. Not. Am. Math. Soc. 20, A-334 (1973) Google Scholar
  11. 11.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8, 109–113 (1979) CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Math. Program. 13, 116–118 (1977) CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Gallai, T.: Maximum-minimum Sätze über Graphen. Acta Math. Acad. Sci. Hung. 9, 395–434 (1958) CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979) zbMATHGoogle Scholar
  16. 16.
    Ghare, P.M., Montgomery, D.C., Turner, T.M.: Optimal interdiction policy for a flow network. Nav. Res. Logist. Q. 18, 37–45 (1971) CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Golden, B.L.: A problem in network interdiction. Nav. Res. Logist. Q. 25, 711–713 (1978) CrossRefzbMATHGoogle Scholar
  18. 18.
    Goldschlager, L.M.: The monotone and planar circuit value problem are log space complete for P. SIGACT News 9(2), 25–29 (1977) CrossRefGoogle Scholar
  19. 19.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, Oxford (1995) zbMATHGoogle Scholar
  20. 20.
    Gurvich, V., Karzanov, A., Khachiyan, L.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Comput. Math. Math. Phys. 28, 85–91 (1988) CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Håstad, J.: Some optimal inapproximability results. In: STOC ’97: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 1–10. ACM Press (1997) Google Scholar
  22. 22.
    Israely, E., Wood, K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: SODA 2006, pp. 117–123 Google Scholar
  24. 24.
    Karakostas, G.: A better approximation ratio for the vertex cover problem. In: ICALP, pp. 1043–1050 (2005) Google Scholar
  25. 25.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972) Google Scholar
  26. 26.
    Karp, R.: A characterization of the minimum cycle mean in a digraph. Discret. Math. 23, 309–311 (1978) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Karzanov, A.V., Lebedev, V.N.: Cyclical games with prohibition. Math. Program. 60, 277–293 (1993) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Malik, K., Mittal, A.K., Gupta, S.K.: The k most vital arcs in the shortest path problem. Oper. Res. Lett. 8, 223–227 (1989) CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    McMasters, A.W., Mustin, T.M.: Optimal interdiction of a supply networks. Nav. Res. Logist. Q. 17, 261–268 (1970) CrossRefzbMATHGoogle Scholar
  30. 30.
    Moulin, H.: Prolongement des jeux à deux joueurs de somme nulle. Bull. Soc. Math. France, Memoire 45 (1976) Google Scholar
  31. 31.
    Moulin, H.: Extension of two person zero sum games. J. Math. Anal. Appl. 55(2), 490–507 (1976) CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Phillips, C.A.: The network inhibition problem. In: Proceedings of the 25th Annual ACM Symposium on the Theory of Computing, pp. 776–785 (1993) Google Scholar
  33. 33.
    Pisaruk, N.N.: Mean cost cyclical games. Math. Oper. Res. 24(4), 817–828 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Poljak, S.: A note on the stable sets and coloring of graphs. Comment. Math. Univ. Carol. 15, 307–309 (1974) MathSciNetzbMATHGoogle Scholar
  35. 35.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, New York (2003) zbMATHGoogle Scholar
  36. 36.
    Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001) Google Scholar
  37. 37.
    Wagner, D.K.: Disjoint (s,t)-cuts in a network. Networks 20, 361–371 (1990) CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Washburn, A., Wood, K.: Two-person zero-sum games for network interdiction. Oper. Res. 43(2), 243–251 (1995) MathSciNetzbMATHGoogle Scholar
  39. 39.
    Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17, 1–18 (1993) CrossRefzbMATHGoogle Scholar
  40. 40.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1–2), 343–359 (1996) CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Leonid Khachiyan
  • Endre Boros
    • 1
  • Konrad Borys
    • 1
  • Khaled Elbassioni
    • 2
  • Vladimir Gurvich
    • 1
  • Gabor Rudolf
    • 1
  • Jihui Zhao
    • 3
  1. 1.RUTCORRutgers UniversityPiscatawayUSA
  2. 2.Max-Planck-Institüt für InformatikSaarbrückenGermany
  3. 3.Department of Computer ScienceRutgers UniversityPiscatawayUSA

Personalised recommendations