Advertisement

Theory of Computing Systems

, Volume 42, Issue 2, pp 222–238 | Cite as

Efficient Algorithms for Anonymous Byzantine Agreement

Article

Abstract

This paper considers the Byzantine agreement problem in a completely connected network of anonymous processors. In this network model the processors have no identifiers and can only detect the link through which a message is delivered. We present a polynomial-time agreement algorithm that requires 3(nt)t/(n−2t)+4 rounds, where n>3t is the number of processors and t is the maximal number of faulty processors that the algorithm can tolerate. We also present an early-stopping variant of the algorithm.

Keywords

Byzantine agreement Anonymous distributed algorithms Anonymous networks Distributed fault tolerant computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th ACM Symposium on Theory of Computing (STOC), pp. 82–93 (1980) Google Scholar
  2. 2.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley-Interscience, New York (2004) Google Scholar
  3. 3.
    Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous shared memory systems. Inf. Comput. 173(2), 162–183 (2002) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without authentication. In: Proc. 25th Annual International Cryptology Conference (CRYPTO), pp. 361–377 (2005) Google Scholar
  5. 5.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th ACM Symposium on Theory of Computing (STOC), pp. 1–10 (1988) Google Scholar
  6. 6.
    Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proc. 18th ACM Symposium on Principles of Distributed Computing (PODC), pp. 181–188 (1999) Google Scholar
  7. 7.
    Boldi, P., Vigna, S.: An Effective characterization of computability in anonymous networks. In: Distributed Computing, 15th International Conference (DISC), pp. 33–47 (2001) Google Scholar
  8. 8.
    Chaum, D.: Blind signatures for untraceable payments. In: Proc. CRYPTO, pp. 199–203 (1982) Google Scholar
  9. 9.
    Chaum, D.: Elections with unconditionally-secret ballots and disruption equivalent to breaking RSA. In: Proc. EUROCRYPT, pp. 177–182 (1988) Google Scholar
  10. 10.
    Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proc. 20th ACM Symposium on Theory of Computing (STOC), pp. 11–19 (1988) Google Scholar
  11. 11.
    Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure election scheme. In: Proc. 26th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 372–382 (1985) Google Scholar
  12. 12.
    Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dolev, D., Fischer, M.J., Fowler, R., Lynch, N.A., Strong, H.R.: An efficient algorithm for Byzantine agreement without authentication. Inf. Control 52(3), 257–274 (1982) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in Byzantine agreement. J. ACM 37(4), 720–741 (1990) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Inf. Process. Lett. 14(4), 183–186 (1982) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distrib. Comput. 1(1), 26–39 (1986) MATHCrossRefGoogle Scholar
  17. 17.
    Garay, J.A., Moses, Y.: Fully polynomial Byzantine agreement for n>3t processors in t+1 rounds. SIAM J. Comput. 27(1), 247–290 (1998) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proc. 19th ACM Symposium on Theory of Computing (STOC), pp. 218–229 (1987) Google Scholar
  19. 19.
    Lamport, L., Schostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982) MATHCrossRefGoogle Scholar
  20. 20.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996) Google Scholar
  21. 21.
    Okun, M.: Agreement among unacquainted Byzantine generals. In: Distributed Computing, 19th International Conference (DISC), pp. 499–500 (2005) Google Scholar
  22. 22.
    Okun, M., Barak, A.: On anonymous Byzantine agreement. Leibniz Center TR 2004-2, School of Computer Science, The Hebrew University (2004) Google Scholar
  23. 23.
    Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987) CrossRefGoogle Scholar
  25. 25.
    Srikanth, T.K., Toueg, S.: Optimal clock synchronization. J. ACM 34(3), 626–645 (1987) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Toueg, S., Perry, K.J., Srikanth, T.K.: Fast distributed agreement. SIAM J. Comput. 16(3), 445–457 (1987) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Turpin, R., Coan, B.A.: Extending binary Byzantine agreement to multivalued Byzantine agreement. Inf. Process. Lett. 18(2), 73–76 (1984) CrossRefGoogle Scholar
  28. 28.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I—characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Computer ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations