Theory of Computing Systems

, Volume 42, Issue 2, pp 131–142 | Cite as

Partial Bi-immunity, Scaled Dimension, and NP-Completeness

  • John M. Hitchcock
  • A. Pavan
  • N. V. Vinodchandran


The Turing and many-one completeness notions for NP have been previously separated under measure, genericity, and bi-immunity hypotheses on NP. The proofs of all these results rely on the existence of a language in NP with almost everywhere hardness.

In this paper we separate the same NP-completeness notions under a partial bi-immunity hypothesis that is weaker and only yields a language in NP that is hard to solve on most strings. This improves the results of Lutz and Mayordomo (Theoretical Computer Science, 1996), Ambos-Spies and Bentzien (Journal of Computer and System Sciences, 2000), and Pavan and Selman (Information and Computation, 2004). The proof of this theorem is a significant departure from previous work. We also use this theorem to separate the NP-completeness notions under a scaled dimension hypothesis on NP.


Turing completeness Many-one completeness Bi-immunity Scaled dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambos-Spies, K., Bentzien, L.: Separating NP-completeness under strong hypotheses. J. Comput. Syst. Sci. 61(3), 335–361 (2000) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Balcázar, J., Schöning, U.: Bi-immune sets for complexity classes. Math. Syst. Theory 18(1), 1–18 (1985) MATHCrossRefGoogle Scholar
  3. 3.
    Buhrman, H., Torenvliet, L.: On the structure of complete sets. In: 9th IEEE Annual Conference on Structure in Complexity Theory, pp. 118–133 (1994) Google Scholar
  4. 4.
    Buhrman, H., Homer, S., Torenvliet, L.: Completeness notions for nondeterministic complexity classes. Math. Syst. Theory 24, 179–200 (1991) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd ACM Symposium on Theory of Computing, pp. 151–158 (1971) Google Scholar
  6. 6.
    Grollmann, J., Selman, A.L.: Complexity measures for public-key cryptosystems. SIAM J. Comput. 17(2), 309–355 (1988) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hitchcock, J.M.: MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theor. Comput. Sci. 289(1), 861–869 (2002) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hitchcock, J.M.: Small spans in scaled dimension. SIAM J. Comput. 34(1), 170–194 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Scaled dimension and nonuniform complexity. J. Comput. Syst. Sci. 69(2), 97–122 (2004) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hitchcock, J.M., Pavan, A.: Hardness hypotheses, derandomization, and circuit complexity. In: Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 336–347. Springer, New York (2004) Google Scholar
  11. 11.
    Homer, S.: Structural properties of nondeterministic complete sets. In: Proceedings of the 5th Annual IEEE Annual Conference on Structure in Complexity Theory, pp. 3–10 (1990) Google Scholar
  12. 12.
    Homer, S.: Structural properties of complete problems for exponential time. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 135–153. Springer, New York (1997) Google Scholar
  13. 13.
    Homer, S., Kurtz, S., Royer, J.: On 1-truth-table-hard languages. Theor. Comput. Sci. 115(2), 383–389 (1993) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–104. Plenum, New York (1972) Google Scholar
  15. 15.
    Ko, K., Moore, D.: Completeness, approximation and density. SIAM J. Comput. 10(4), 787–796 (1981) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ladner, R.E., Lynch, N.A., Selman, A.L.: A comparison of polynomial time reducibilities. Theor. Comput. Sci. 1, 103–123 (1975) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Levin, L.A.: Universal sequential search problems. Probl. Inf. Transm. 9, 265–266 (1973). English translation of original in Problemy Peredaci Informatsii Google Scholar
  18. 18.
    Longpré, L., Young, P.: Cook reducibility is faster than Karp reducibility. J. Comput. Syst. Sci. 41, 389–401 (1990) MATHCrossRefGoogle Scholar
  19. 19.
    Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32(5), 1236–1259 (2003) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lutz, J.H., Mayordomo, E.: Cook versus Karp-Levin: separating completeness notions if NP is not small. Theor. Comput. Sci. 164, 141–163 (1996) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ogiwara, M., Watanabe, O.: On polynomial time bounded truth-table reducibility of NP sets to sparse sets. SIAM J. Comput. 20(3), 471–483 (1991) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pavan, A.: Comparison of reductions and completeness notions. In: L. Hemaspaandra (ed.) SIGACT News. Complexity Theory Column 40. ACM Press (June 2003) Google Scholar
  23. 23.
    Pavan, A., Selman, A.L.: Bi-immunity separates strong NP-completeness notions. Inf. Comput. 188(1), 116–126 (2004) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Selman, A.L.: Reductions on NP and P-selective sets. Theor. Comput. Sci. 19, 287–304 (1982) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Watanabe, O.: A comparison of polynomial time completeness notions. Theor. Comput. Sci. 54, 249–265 (1987) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • John M. Hitchcock
    • 1
  • A. Pavan
    • 2
  • N. V. Vinodchandran
    • 3
  1. 1.Department of Computer ScienceUniversity of WyomingLaramieUSA
  2. 2.Department of Computer ScienceIowa State UniversityAmesUSA
  3. 3.Department of Computer Science and EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations