Calcified Tissue International

, Volume 64, Issue 1, pp 1–7 | Cite as

Bone and Cytokines: Beyond IL-1, IL-6 and TNF-α

  • A.  Rifas


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luben RA, Mundy GR, Trummel CL, Raisz LG (1974) Partial purification of osteoclast-activating factor from phytohemagglutinin-stimulated human leukocytes. J Clin Invest 53:1473–1480PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Elmslie RE, Dow SW, Ogilvie GK (1991) Interleukins: biological properties and therapeutic potential. J Vet Intern Med 5:283–293PubMedCrossRefGoogle Scholar
  3. 3.
    Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, Manolagas SC (1992) 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest 89:883–891PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Girasole G, Passeri G, Pedrazzoni M, Giuliani N, Passeri M (1995) Interleukin-6: a pathogenetic role in the postmenopausal osteoporosis? Acta Biomed Ateneo Parmense 66:125–138PubMedGoogle Scholar
  5. 5.
    Rifas L, Kenney JS, Marcelli M, Pacifici R, Cheng SL, Dawson LL, Avioli LV (1995) Production of interleukin-6 in human osteoblasts and human bone marrow stromal cells: evidence that induction by interleukin-1 and tumor necrosis factor-alpha is not regulated by ovarian steroids. Endocrinology 136:4056–4067PubMedGoogle Scholar
  6. 6.
    Keeting PE, Rifas L, Harris SA, Colvard DS, Spelsberg TC, Peck WA, Riggs BL (1991) Evidence for interleukin-1 beta production by cultured normal human osteoblast-like cells. J Bone Miner Res 6:827–833PubMedCrossRefGoogle Scholar
  7. 7.
    MacDonald BR, Gowen M (1992) Cytokines and bone. Br J Rheumatol 31:149–155PubMedCrossRefGoogle Scholar
  8. 8.
    Girasole G, Passeri G, Jilka RL, Manolagas SC (1994) Interleukin-11: a new cytokine critical for osteoclast development. J Clin Invest 93:1516–1524PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Littlewood AJ, Russell J, Harvey GR, Hughes DE, Russell RG, Gowen M (1991) The modulation of the expression of IL-6 and its receptor in human osteoblasts in vitro. Endocrinology 129:1513–1520PubMedCrossRefGoogle Scholar
  10. 10.
    Marie PJ, Hott M, Launay JM, Graulet AM, Gueris J (1993) In vitro production of cytokines by bone surface-derived osteoblastic cells in normal and osteoporotic postmenopausal women: relationship with cell proliferation. J Clin Endocrinol Metab 77:824–830PubMedGoogle Scholar
  11. 11.
    Thomson BM, Saklatvala J, Chambers TJ (1986) Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts. J Exp Med 164:104–112PubMedCrossRefGoogle Scholar
  12. 12.
    Thomson BM, Mundy GR, Chambers TJ (1987) Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 138:775–779PubMedGoogle Scholar
  13. 13.
    Gowen M, Wood DD, Ihrie EJ, McGuire MK, Russell RG (1983) An interleukin 1-like factor stimulates bone resorption in vitro. Nature 306:378–380PubMedCrossRefGoogle Scholar
  14. 14.
    Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T (1990) IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297–3303PubMedGoogle Scholar
  15. 15.
    Pacifici R, Rifas L, Teitelbaum S, Slatopolsky E, McCracken R, Bergfeld M, et al (1987) Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci USA 84:4616–4620PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Pacifici R, Rifas L, McCracken R, Vered I, McMurtry C, Avioli LV, Peck WA (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc Natl Acad Sci USA 86:2398–2402PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Pacifici R, Rifas L, McCracken R, Avioli LV (1990) The role of interleukin-1 in postmenopausal bone loss. Exp Gerontol 25:309–316PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson RA, Boyce BF, Mundy GR, Roodman GD (1989) Tumors producing human tumor necrosis factor induced hypercalcemia and osteoclastic bone resorption in nude mice. Endocrinology 124:1424–1427PubMedCrossRefGoogle Scholar
  19. 19.
    Mundy GR (1991) Inflammatory mediators and the destruction of bone. J Periodontal Res 26:213–217PubMedCrossRefGoogle Scholar
  20. 20.
    Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319:516–518PubMedCrossRefGoogle Scholar
  21. 21.
    Kimble RB, Matayoshi AB, Vannice JL, Kung V, Williams C, Pacifici R (1995) Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology 136:3054–3061PubMedGoogle Scholar
  22. 22.
    Passeri G, Girasole G, Manolagas SC, Jilka RL (1994) Endogenous production of tumor necrosis factor by primary cultures of murine calvarial cells: influence on IL-6 production and osteoclast development. Bone Miner 24:109–126PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen-Solal ME, Graulet AM, Denne MA, Gueris J, Baylink D, de Vernejoul MC (1993) Peripheral monocyte culture supernatants of menopausal women can induce bone resorption: involvement of cytokines. J Clin Endocrinol Metab 77:1648–1653PubMedGoogle Scholar
  24. 24.
    Ralston SH, Russell RG, Gowen M (1990) Estrogen inhibits release of tumor necrosis factor from peripheral blood mononuclear cells in postmenopausal women. J Bone Miner Res 5:983–988PubMedCrossRefGoogle Scholar
  25. 25.
    Romas E, Udagawa N, Zhou H, Tamura T, Saito M, Taga T, Hilton DJ, Suda T, Ng KW, Martin TJ (1996) The role of gp130-mediated signals in osteoclast development: regulation of interleukin 11 production by osteoblasts and distribution of its receptor in bone marrow cultures. J Exp Med 183:2581–2591PubMedCrossRefGoogle Scholar
  26. 26.
    Suda T, Nakamura I, Jimi E, Takahashi N (1997) Regulation of osteoclast function. J Bone Miner Res 12:869–879PubMedCrossRefGoogle Scholar
  27. 27.
    Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, Koishihara Y, Ohsugi Y, Kumaki K, Taga T, Kishimoto T, Suda T (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc National Academy of Sciences USA 90:11924–11928CrossRefGoogle Scholar
  28. 28.
    Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91PubMedCrossRefGoogle Scholar
  29. 29.
    Manolagas SC, Jilka RL, Girasole G, Passeri G, Bellido T (1993) Estrogen, cytokines, and the control of osteoclast formation and bone resorption in vitro and in vivo. Osteoporos Int 3(suppl 1):114–116PubMedCrossRefGoogle Scholar
  30. 30.
    Passeri G, Girasole G, Jilka RL, Manolagas SC (1993) Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology 133:822–828PubMedGoogle Scholar
  31. 31.
    Kanatani M, Sugimoto T, Fukase M, Chihara K (1994) Role of interleukin-6 and prostaglandins in the effect of monocyte-conditioned medium on osteoclast formation. Am J Physiol 267:E868–E876PubMedGoogle Scholar
  32. 32.
    Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD (1990) IL-6 stimulates osteoclast-like multinucleated cell formation in long-term human marrow cultures by inducing IL-1 release. J Immunol 144:4226–4230PubMedGoogle Scholar
  33. 33.
    O'Keefe RJ, Teot LA, Singh D, Puzas JE, Rosier RN, Hicks DG (1997) Osteoclasts constitutively express regulators of bone resorption: an immunohistochemical and in situ hybridization study. Lab Invest 76:457–465PubMedGoogle Scholar
  34. 34.
    Pacifici R (1995) Cytokines and osteoclast activity. Calcif Tissue Int 56(suppl 1):S27–S28PubMedGoogle Scholar
  35. 35.
    Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD (1989) Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in vitro. J Bone Miner Res 4:113–118PubMedCrossRefGoogle Scholar
  36. 36.
    Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N (1995) Modulation of osteoclast differentiation by local factors. Bone 17:87S–91SPubMedCrossRefGoogle Scholar
  37. 37.
    Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051PubMedCrossRefGoogle Scholar
  38. 38.
    Bismar H, Diel I, Ziegler R, Pfeilschifter J (1995) Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement. J Clin Endocrinol Metab 80:3351–3355PubMedGoogle Scholar
  39. 39.
    Horowitz MC (1993) Cytokines and estrogen in bone: antiosteoporotic effects. Science 260:626–627PubMedCrossRefGoogle Scholar
  40. 40.
    McKane WR, Khosla S, Peterson JM, Egan K, Riggs BL (1994) Circulating levels of cytokines that modulate bone resorption: effects of age and menopause in women. J Bone Miner Res 9:1313–1318PubMedCrossRefGoogle Scholar
  41. 41.
    Zheng SX, Vrindts Y, Lopez M, De Groote D, Zangerle PF, Collette J, Franchimont N, Geehen V, Albert A, Reginster JY (1997) Increase in cytokine production (IL-1 beta, IL-6, TNF-alpha but not IFN-gamma, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas 26:63–71PubMedCrossRefGoogle Scholar
  42. 42.
    Kimble RB, Bain S, Pacifici R (1997) The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res 12:935–941PubMedCrossRefGoogle Scholar
  43. 43.
    Manolagas SC (1995) Role of cytokines in bone resorption. Bone 17:63S–67SPubMedCrossRefGoogle Scholar
  44. 44.
    Kawasaki K, Gao YH, Yokose S, Kaji Y, Nakamura T, Suda T, Yoshida K, Taga T, Kishimoto T, Kataoka H, Yuasa T, Norimatsu H, Yamaguchi A (1997) Osteoclasts are present in gp130-deficient mice. Endocrinology 138:4959–4965PubMedGoogle Scholar
  45. 45.
    Verhaeghe J, Van Herck E, van Bree R, Bouillon R, Dequeker J, Keith JCJ (1998) Recombinant human interleukin-11 does not modify biochemical parameters of bone remodeling and bone mineral density in adult ovariectomized rats. J Interferon Cytokine Res 18:49–53PubMedCrossRefGoogle Scholar
  46. 46.
    Miyamoto A, Kunisada T, Hemmi H, Yamane T, Yasuda H, Miyake K, et al (1998) Establishment and characterization of an immortal macrophage-like cell line inducible to differentiate to osteoclasts. Biochem Biophys Res Commun 242:703–709PubMedCrossRefGoogle Scholar
  47. 47.
    Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, Kuestner R, Pacifici R (1996) Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93:10785–10790PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Pierelli L, Scambia G, d'Onofrio G, Ciarli M, Fattorossi A, Bonanno G, Menichella G, Battaglia A, Benedetti PP, Tommasi M, Mancuso S, Leone G (1997) Generation of multinuclear tartrate-resistant acid phosphatase-positive osteoclasts in liquid culture of purified human peripheral blood CD34+ progenitors. Br J Haematol 96:64–69PubMedCrossRefGoogle Scholar
  49. 49.
    Horwood NJ, Udagawa N, Elliott J, Grail D, Okamura H, Kurimoto M, Dunn AR, Martin T, Gillespie MT (1998) Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 101:595–603PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793PubMedCrossRefGoogle Scholar
  51. 51.
    Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, et al (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155:5483–5486PubMedGoogle Scholar
  52. 52.
    John V, Hock JM, Short LL, Glasebrook AL, Galvin RJ (1996) A role for CD8+ T lymphocytes in osteoclast differentiation in vitro. Endocrinology 137:2457–2463PubMedGoogle Scholar
  53. 53.
    van Bezooijen RL, de Grooth R, Farih-Sips H, Papapoulus SE, Lowik CWGM (1997) Interleukin-17: a new bone-acting cytokine. J Bone Miner Res 12(suppl 1):S438Google Scholar
  54. 54.
    Rothe L, Collin-Osdoby P, Chen Y, Sunyer T, Chaudhary L, Tsay A, Goldring S, Avioli LV, Osdoby P (1998) Human osteoclasts and osteoclast-like cells synthesize and release high basal and inflammatory stimulated levels of the potent chemokine IL-8. Endocrinology (in press)Google Scholar
  55. 55.
    Gille J, Swerlick RA, Lawley TJ, Caughman SW (1996) Differential regulation of vascular cell adhesion molecule-1 gene transcription by tumor necrosis factor alpha and interleukin-1 alpha in dermal microvascular endothelial cells. Blood 87:211–217PubMedGoogle Scholar
  56. 56.
    Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, Schleimer RP (1995) IL-13 selectively induces vascular cell adhesion molecule-1 expression in human endothelial cells. J Immunol 154:799–803PubMedGoogle Scholar
  57. 57.
    Tanaka Y, Morimoto I, Nakano Y, Okada Y, Hirota S, Nomura S, Nakamura T, Eto S (1995) Osteoblasts are regulated by the cellular adhesion through ICAM- 1 and VCAM-1. J Bone Miner Res 10:1462–1469PubMedCrossRefGoogle Scholar
  58. 58.
    Feuerbach D, Feyen JH (1997) Expression of the cell-adhesion molecule VCAM-1 by stromal cells is necessary for osteoclastogenesis. FEBS Lett 402:21–24PubMedCrossRefGoogle Scholar
  59. 59.
    Posner LJ, Miligkos T, Gilles JA, Carnes DL, Taddeo DR, Graves DT (1997) Monocyte chemoattractant protein-1 induces monocyte recruitment that is associated with an increase in numbers of osteoblasts. Bone 21:321–327PubMedCrossRefGoogle Scholar
  60. 60.
    Volejnikova S, Laskari M, Marks SCJ, Graves DT (1997) Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse. Am J Pathol 150:1711–1721PubMedCentralPubMedGoogle Scholar
  61. 61.
    Kukita T, Nomiyama H, Ohmoto Y, Kukita A, Shuto T, Hotokebuchi T, et al (1997) Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow: its role in regulation of hematopoiesis and osteoclast recruitment. Lab Invest 76:399–406PubMedGoogle Scholar
  62. 62.
    Chaudhary LR, Avioli LV (1994) Dexamethasone regulates IL-1 beta and TNF-alpha-induced interleukin-8 production in human bone marrow stromal and osteoblast-like cells. Calcif Tissue Int 55:16–20PubMedCrossRefGoogle Scholar
  63. 63.
    Nishiura H, Tanaka J, Takeya M, Tsukano M, Kambara T, Imamura T (1996) IL-8/NAP-1 is the major T-cell chemoattractant in synovial tissues of rheumatoid arthritis. Clin Immunol Immunopathol 80:179–184PubMedCrossRefGoogle Scholar
  64. 64.
    Graves DT, Jiang Y (1995) Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med 6:109–118PubMedCrossRefGoogle Scholar
  65. 65.
    Kinne RW, Palombo-Kinne E, Emmrich F (1997) T-cells in the pathogenesis of rheumatoid arthritis. Villains or accomplices? Biochim Biophys Acta 1360:109–141PubMedCrossRefGoogle Scholar
  66. 66.
    Weyand CM, Goronzy JJ (1997) Pathogenesis of rheumatoid arthritis. Med Clin North Am 81:29–55PubMedCrossRefGoogle Scholar
  67. 67.
    Maini RN, Elliott M, Brennan FM, Williams RO, Feldmann M (1997) TNF blockade in rheumatoid arthritis: implications for therapy and pathogenesis. APMIS 105:257–263PubMedCrossRefGoogle Scholar
  68. 68.
    Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212PubMedCrossRefGoogle Scholar
  69. 69.
    Webb LM, Walmsley MJ, Feldmann M (1996) Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 costimulatory pathway: requirement for both B7-1 and B7-2. Eur J Immunol 26:2320–2328PubMedCrossRefGoogle Scholar
  70. 70.
    Liu MF, Kohsaka H, Sakurai H, Azuma M, Okumura K, Saito I, et al (1996) The presence of costimulatory molecules CD86 and CD28 in rheumatoid arthritis synovium. Arthritis Rheum 39:110–114PubMedCrossRefGoogle Scholar
  71. 71.
    Schmidt D, Goronzy JJ, Weyand CM (1996) CD4+ CD7-CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 97:2027–2037PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Barwell R: Diseases of the joints. Hardwicke, London, 1865Google Scholar
  73. 73.
    Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 35:309–322PubMedCrossRefGoogle Scholar
  74. 74.
    Dequeker J, Maenaut K, Verwilghen J, Westhovens R (1995) Osteoporosis in rheumatoid arthritis. Clin Exp Rheumatol 13(suppl 12):S21–26PubMedGoogle Scholar
  75. 75.
    Star VL, Hochberg MC (1994) Osteoporosis in patients with rheumatic diseases. Rheum Dis Clin North Am 20:561–576PubMedGoogle Scholar
  76. 76.
    Gough AK, Lilley J, Eyre S, Holder RL, Emery P (1994) Generalized bone loss in patients with early rheumatoid arthritis. Lancet 344:23–27PubMedCrossRefGoogle Scholar
  77. 77.
    Wagner S, Fritz P, Einsele H, Sell S, Saal JG (1997) Evaluation of synovial cytokine patterns in rheumatoid arthritis and osteoarthritis by quantitative reverse transcription polymerase chain reaction. Rheumatol Int 16:191–196PubMedCrossRefGoogle Scholar
  78. 78.
    Okamoto H, Yamamura M, Morita Y, Harada S, Makino H, Ota Z (1997) The synovial expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum 40:1096–1105PubMedCrossRefGoogle Scholar
  79. 79.
    Jones SM, Bhalla AK (1993) Osteoporosis in rheumatoid arthritis. Clin Exp Rheumatol 11:557–562PubMedGoogle Scholar
  80. 80.
    Buchinsky FJ, Ma Y, Mann GN, Rucinski B, Bryer HP, Romero DF, Jee WS, Epstein S (1996) T lymphocytes play a critical role in the development of cyclosporin A-induced osteopenia. Endocrinology 137:2278–2285PubMedGoogle Scholar
  81. 81.
    Schlosberg M, Movsowitz C, Epstein S, Ismail F, Fallon MD, Thomas S (1989) The effect of cyclosporin A administration and its withdrawal on bone mineral metabolism in the rat. Endocrinology 124:2179–2184PubMedCrossRefGoogle Scholar
  82. 82.
    Movsowitz C, Epstein S, Fallon M, Ismail F, Thomas S (1988) Cyclosporin-A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinology 123:2571–2577PubMedCrossRefGoogle Scholar
  83. 83.
    Takayanagi H, Oda H, Yamamoto S, Kawaguchi H, Tanaka S, Nishikawa T, Koshihara Y (1997) A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun 240:279–286PubMedCrossRefGoogle Scholar
  84. 84.
    Tamai M, Sagawa K, Kawabata R, Inoue A, Itoh K (1996) Production of IL-6 by T cells from the femoral head of patients with rapidly destructive coxopathy (RDC). Clin Exp Immunol 103:506-513Google Scholar
  85. 85.
    Tak PP, Taylor PC, Breedveld FC, Smeets TJ, Daha MR, Kluin PM, Meinders AE, Maini RN (1996) Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor alpha monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum 39:1077–1081PubMedCrossRefGoogle Scholar
  86. 86.
    Feldmann M, Elliott MJ, Woody JN, Maini RN (1997) Antitumor necrosis factor-alpha therapy of rheumatoid arthritis}. Adv Immunol 64:283–350PubMedCrossRefGoogle Scholar
  87. 87.
    Jendro MC, Ganten T, Matteson EL, Weyand CM, Goronzy JJ (1995) Emergence of oligoclonal T cell populations following therapeutic T cell depletion in rheumatoid arthritis. Arthritis Rheum 38:1242–1251PubMedCrossRefGoogle Scholar
  88. 88.
    Quesniaux VF (1993) Immunosuppressants: tools to investigate the physiological role of cytokines. Bioessays 15:731–739PubMedCrossRefGoogle Scholar
  89. 89.
    Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, Fiorentino D, Nourse J, Crabtree GR (1996) The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol 80:S40–55PubMedCrossRefGoogle Scholar
  90. 90.
    Walsh CT, Zydowsky LD, McKeon FD (1992) Cyclosporin A, the cyclophilin class of peptidylprolyl isomerases, and blockade of T cell signal transduction. J Biol Chem 267:13115–13118PubMedGoogle Scholar
  91. 91.
    Wechsler AS, Gordon MC, Dendorfer U, LeClair KP (1994) Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway. J Immunol 153:2515–2523PubMedGoogle Scholar
  92. 92.
    Thiebaud D, Krieg MA, Gillard-Berguer D, Jacquet AF, Goy JJ, Burckhardt P (1996) Cyclosporine induces high bone turnover and may contribute to bone loss after heart transplantation. Eur J Clin Invest 26:549–555PubMedCrossRefGoogle Scholar
  93. 93.
    Withold W, Wolf HH, Kollbach S, Heyll A, Schneider W, Reinauer H (1996) Monitoring of bone metabolism after bone marrow transplantation by measuring two different markers of bone turnover. Eur J Clin Chem Clin Biochem 34:193-197PubMedGoogle Scholar
  94. 94.
    Epstein S, Shane E, Bilezikian JP (1995) Organ transplantation and osteoporosis. Curr Opin Rheumatol 7:255–261PubMedCrossRefGoogle Scholar
  95. 95.
    Buchinsky FJ, Ma Y, Mann GN, Rucinski B, Bryer HP, Paynton BV, et al (1995) Bone mineral metabolism in T lymphocyte-deficient and -replete strains of rat. J Bone Miner Res 10:1556–1565PubMedCrossRefGoogle Scholar
  96. 96.
    Sass DA, Liss T, Bowman AR, Rucinski B, Popoff SN, Pan Z, et al (1997) The role of the T lymphocyte in estrogen deficiency osteopenia. J Bone Miner Res 12:479–486PubMedCrossRefGoogle Scholar
  97. 97.
    van der Pouw Kraan TC, Boeije LC, Troon JT, Rutschmann SK, Wijdenes J, Aarden LA (1996) Human IL-13 production is negatively influenced by CD3 engagement. Enhancement of IL-13 production by cyclosporin A. J Immunol 156:1818–1823PubMedGoogle Scholar
  98. 98.
    Rifas L, Cheng S-L, Avioli LV (1998) IL-13 regulates interleukin-6 production and vascular cell adhesion molecule-1 expression in human osteoblastic cells. Endocrinology (in press)Google Scholar
  99. 99.
    Rifas L, Avioli LV (1998) T cell cytokine(s) stimulates IL-6 in human osteoblastic cells. J Bone Miner Res (in press)Google Scholar
  100. 100.
    Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS, Frankel WN, Lee SY, Choi Y (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun Nterminal kinase in T cells. J Biol Chem 272:25190–25194PubMedCrossRefGoogle Scholar
  101. 101.
    Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi Y (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186:2075–2080PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Gallbert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179PubMedCrossRefGoogle Scholar
  103. 103.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRefGoogle Scholar
  105. 105.
    Lacey DL, Timms E, Tan H-L, Kelley MJ, Dunstan CR, Burgess T, et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRefGoogle Scholar
  106. 106.
    Rifas L, Civitelli R, Avioli LV (1998) Activated T cells stimulate IL-6 production by human osteoblasts via soluble factors and cell contact. J Bone Miner Res 12:S436Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1999

Authors and Affiliations

  • A.  Rifas
    • 1
  1. 1.Department of Internal Medicine, Division of Bone and Mineral DiseasesWashington University School of Medicine at Barnes-Jewish HospitalSt. LouisUSA

Personalised recommendations