Evaluation of a Panel of MicroRNAs that Predicts Fragility Fracture Risk: A Pilot Study

  • Aurélie LadangEmail author
  • Charlotte Beaudart
  • Médéa Locquet
  • Jean-Yves Reginster
  • Olivier Bruyère
  • Etienne Cavalier
Original Research


The assessment of fragility fracture risk based on bone densitometry and FRAX°, although commonly used, has shown some limitations. MicroRNAs (miRNAs) are promising biomarkers known to regulate post-transcriptional gene expression. Many studies have already shown that microRNAs are involved in bone homeostasis by modulating osteoblast and osteoclast gene expression. In this pilot study, we investigated the ability of an miRNA panel (namely, the OsteomiR° score) to predict fragility fracture risk in older people. miRNAs were extracted from the sera of 17 persons who developed a fracture within 3 years of collecting the serum and 16 persons who did not experience fractures in the same period. Nineteen miRNAs known to be involved in bone homeostasis were assessed, and 10 miRNAs were employed to calculate the OsteomiR° score. We found a trend towards higher OsteomiR° scores in individuals who experienced fractures compared to control subjects. The most suitable cut-off that maximized sensitivity and specificity was determined by ROC curve analysis, and a positive predictive value of 68% and a sensitivity of 76% were obtained. The OsteomiR° score was higher in osteopenic and osteoporotic subjects compared to subjects with a normal T score. Additionally, the OsteomiR° score predicted more fracture events than the recommended “need-to-treat” thresholds based on FRAX° 10-year probability. miRNAs reflect impairments in bone homeostasis several years before the occurrence of a fracture. The OsteomiR° score seems to be a promising miRNA panel for fragility fracture risk prediction and might have added value compared to FRAX°. Given the limited cohort size, further studies should be dedicated to validating the OsteomiR° score.


Fracture risk prediction miRNA Diagnosis Prevention 



We express our sincere thanks to Matthias Hackl, Susanna Skalicky and the TamiRNA GbmH team for providing technical support for the experiments.


This study was supported by clinical chemistry department and Fondation Léon Fredericq.

Compliance with Ethical Standards

Conflict of interest

JYR is a member of paid advisory boards for IBSA-GENEVRIER, MYLAN, RADIUS HEALTH, PIERRE FABRE; upon invitation, is a paid lecturer of sponsor for IBSA-GENEVRIER, MYLAN, CNIEL, DAIRY RESEARCH COUNCIL (DRC) and received grant support from industry (all through the Institution) from IBSA-GENEVRIER, MYLAN, CNIEL, RADIUS HEALTH. All other authors state that they have no conflicts of interest.


  1. 1.
    Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2):4–9CrossRefGoogle Scholar
  2. 2.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Randell AG, Nguyen TV, Bhalerao N, Silverman SL, Sambrook PN, Eisman JA (2000) Deterioration in quality of life following hip fracture: a prospective study. Osteoporos Int 11(5):460–466PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Melton LJ, Johnell O, Lau E, Mautalen CA, Seeman E (2004) Osteoporosis and the global competition for health care resources. J Bone Miner Res 19(7):1055–1058PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Reid IR (2015) Efficacy, effectiveness and side effects of medications used to prevent fractures. J Intern Med 277(6):690–706PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Camacho PM et al (2016) American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis-executive summary. Endocr Pract 22(4):1–42PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Johnell O et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Siris ES et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. J Am Med Assoc 286(22):2815–2822CrossRefGoogle Scholar
  9. 9.
    Kanis JA et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Silverman SL, Calderon AD (2010) The utility and limitations of FRAX: a us perspective. Curr Osteoporos Rep 8(4):192–197PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sambrook PN et al (2007) Influence of fall related factors and bone strength on fracture risk in the frail elderly. Osteoporos Int 18(5):603–610PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Giangregorio LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27(2):301–308PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schwartz AV et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21):2184–2192PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Walter E, Dellago H, Grillari J, Dimai HP, Hackl M (2018) Cost-utility analysis of fracture risk assessment using microRNAs compared with standard tools and no monitoring in the Austrian female population. Bone 108:44–54PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases—complex signatures for multifactorial diseases? Mol Cell Endocrinol 432:83–95PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Foessl I, Kotzbeck P, Obermayer-Pietsch B (2019) miRNAs as novel biomarkers for bone related diseases. J Lab Precis Med 4(2–2):2–2CrossRefGoogle Scholar
  17. 17.
    Tie Y, Liu B, Fu H, Zheng X (2009) Circulating miRNA and cancer diagnosis. Sci China Ser C Life Sci 52(12):1117–1122CrossRefGoogle Scholar
  18. 18.
    Meder B et al (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106(1):13–23PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    McClelland AD, Kantharidis P (2013) microRNA in the development of diabetic complications. Clin Sci 126(2):95–110CrossRefGoogle Scholar
  20. 20.
    He P et al (2016) miR-141 modulates osteoblastic cell proliferation by regulating the target gene of IncRNA H19 and IncRNA H19-derived miR-675. Am J Transl Res 8(4):1780–1788PubMedPubMedCentralGoogle Scholar
  21. 21.
    Li D et al (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7(1):10872PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhao C et al (2015) miR-214 promotes osteoclastogenesis by targeting pten/pi3k/Akt pathway. RNA Biol 12(3):343–353PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cao F, Zhan J, Chen X, Zhang K, Lai R, Feng Z (2017) miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling. Mol Med Rep 16(6):9301–9308PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tu B et al (2016) miR-203 inhibits the traumatic heterotopic ossification by targeting Runx2. Cell Death Dis 7(10):e2436PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yin Q, Wang J, Fu Q, Gu S, Rui Y (2018) CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis. J Cell Mol Med 22(12):6112–6121PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Peng H, Lu SL, Bai Y, Fang X, Huang H, Zhuang XQ (2018) MiR-133a inhibits fracture healing via targeting RUNX2/BMP2. Eur Rev Med Pharmacol Sci 22(9):2519–2526PubMedPubMedCentralGoogle Scholar
  27. 27.
    Deng Y et al (2013) Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev 22(16):2278–2286PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhang L et al (2017) Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Miner Res 32(12):2466–2475PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Huang J, Song G, Yin Z, Fu Z, Ye Z (2017) MiR-29a and messenger RNA expression of bone turnover markers in canonical Wnt pathway in patients with ankylosing spondylitis. Clin Lab 63(5–6):955–960PubMedPubMedCentralGoogle Scholar
  30. 30.
    Mäkitie RE, Hackl M, Niinimäki R, Kakko S, Grillari J, Mäkitie O (2018) Altered MicroRNA profile in osteoporosis caused by impaired WNT signaling. J. Clin. Endocrinol. Metab. 103(5):1985–1996PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cao Z et al (2014) MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS ONE 9(5):e97098PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Seeliger C et al (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29(8):1718–1728PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kocijan R et al (2016) Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 101(11):4125–4134PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Feichtinger X et al (2018) Bone-related circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their Association to Bone Microstructure and Histomorphometry. Sci Rep 8(1):4867PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Heilmeier U et al (2016) Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. J Bone Miner Res 31(12):2173–2192PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Beaudart C et al (2015) Quality of life and physical components linked to sarcopenia: the SarcoPhAge study. Exp Gerontol 69:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Norlund L et al (1997) Reference intervals for the glomerular filtration rate and cell-proliferation markers: serum cystatin C and serum β2-microglobulin/cystatin C-ratio. Scand J Clin Lab Investig 57(6):463–470CrossRefGoogle Scholar
  38. 38.
    Johansson H et al (2011) A FRAX® model for the assessment of fracture probability in Belgium. Osteoporos Int 22(2):453–461PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Briot K et al (2012) Actualisation 2012 des recommandations françaises du traitement médicamenteux de l’ostéoporose post-ménopausique. Revue du rhumatisme. 79(3):264–274CrossRefGoogle Scholar
  40. 40.
    Chen Y, Alman BA (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106(3):353–362PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kanis JA, Oden A, Johansson H, McCloskey E (2012) Pitfalls in the external validation of FRAX. Osteoporos Int 23(2):423–431PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Aubry-Rozier B, Stoll D, Krieg MA, Lamy O, Hans D (2013) What was your fracture risk evaluated by FRAX® the day before your osteoporotic fracture? Clin Rheumatol 32(2):219–223PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Chen XF, Li XL, Zhang H, Liu GJ (2014) Were you identified to be at high fracture risk by FRAX® before your osteoporotic fracture occurred? Clin Rheumatol 33(5):693–698PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Watts NB, Ettinger B, LeBoff MS (2009) FRAX facts. J Bone Miner Res 24(6):975–979PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Poynard T et al (2011) Applicability and precautions of use of liver injury biomarker FibroTest A reappraisal at 7 years of age. BMC Gastroenterol 11(39):39PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clinical Chemistry Department / CHU de LiègeLiègeBelgium
  2. 2.Public Health, Epidemiology and Health Economics Department, ULiègeLiègeBelgium
  3. 3.Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Centre Académique de Recherche Et D’Expérimentation en Santé (CARES SPRL)LiègeBelgium

Personalised recommendations