Advertisement

Osteoblasts Regulate Angiogenesis in Response to Mechanical Unloading

  • Vimal Veeriah
  • Riccardo Paone
  • Suvro Chatterjee
  • Anna Teti
  • Mattia Capulli
Original Research

Abstract

During mechanical unloading, endothelial cells reduce osteogenesis and increase bone resorption. Here we describe the feedback response of endothelial cells to unloaded osteoblasts. Primary endothelial cells, ex vivo mouse aortic rings and chicken egg yolk membranes were incubated with conditioned medium from mouse primary osteoblasts (OB-CM) subjected to unit gravity or simulated microgravity, to assess its effect on angiogenesis. In vivo injection of botulin toxin A (Botox) in the quadriceps and calf muscles of C57BL/6J mice was performed to mimic disuse osteoporosis. Unloaded osteoblasts showed strong upregulation of the pro-angiogenic factor, VEGF, and their conditioned medium increased in vitro endothelial cell viability, Cyclin D1 expression, migration and tube formation, ex vivo endothelial cell sprouting from aortic rings, and in ovo angiogenesis. Treatment with the VEGF blocker, avastin, prevented unloaded OB-CM-mediated in vitro and ex vivo enhancement of angiogenesis. Bone mechanical unloading by Botox treatment, known to reduce bone mass, prompted the overexpression of VEGF in osteoblasts. The cross talk between osteoblasts and endothelial cells plays a pathophysiologic role in the response of the endothelium to unloading during disuse osteoporosis. In this context, VEGF represents a prominent osteoblast factor stimulating angiogenesis.

Keywords

Osteoblast Mechanical unloading Angiogenesis VEGF Endothelial cells 

Notes

Acknowledgements

This work was supported by the European Commission grants—Program “PEOPLE”—Call identifier: FP7-PEOPLE-2011-IRSES—Proposal No. 295181—Acronym: INTERBONE, Program “H2020”—Call identifier: H2020-MSCA-RISE-2015—Proposal No. 690850—Acronym RUBICON, and Program “Collaborative Project—Large-scale integrating project”—Call identifier: FP7-HEALTH.2012.2.1.1-1-C Proposal No. 602300—Acronym: SYBIL. V.V. and M.C. were recipients of Marie Curie fellowships from the INTERBONE project. V.V. was also recipient of Marie Curie fellowship from the RUBICON project. We are indebted with Dr. Rita Di Massimo for the editing of the manuscript.

Author Contributions

AT coordinated the study, discussed the experimental plan and the results, and prepared the final version of the paper. VV performed the experiments. RP performed the histomorphometric analysis. SC discussed the experimental plan and the results. MC supervised the study, discussed the experimental plan and the results, contributed to the evaluation of the results, drafted and organized the paper. All reviewed and approved the manuscript.

Compliance with Ethical Standards

Conflict of interest

Vimal Veeriah, Riccardo Paone, Suvro Chatterjee, Anna Teti, Mattia Capulli declare that they have no conflict of interest to disclose.

Human and Animal Rights and Informed Consent

All procedures involving animals and their care were conducted in conformity with national and international laws and policies (European Economic Community Council Directive 86/609, OJ L 358, 1, December 12, 1987; Italian Legislative Decree 4.03.2014, n.26, Gazzetta Ufficiale della Repubblica Italiana no. 61, March 4, 2014). The animal experimentation shown in this article was approved by the Italian Ministry of Health, authorization number: 1012/2016; and was done in adherence to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.

References

  1. 1.
    Lee DY, Cho T-J, Kim JA et al (2008) Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 42:932–941.  https://doi.org/10.1016/j.bone.2008.01.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328.  https://doi.org/10.1038/nature13145 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Clarkin CE, Garonna E, Pitsillides AA, Wheeler-Jones CPD (2008) Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: a negative modulatory role for prostanoids in VEGF-mediated cell: cell communication? Exp Cell Res 314:3152–3161.  https://doi.org/10.1016/j.yexcr.2008.07.027 CrossRefPubMedGoogle Scholar
  4. 4.
    Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507:376–380.  https://doi.org/10.1038/nature13146 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Veeriah V, Zanniti A, Paone R et al (2016) Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk. Sci Rep 6:29880.  https://doi.org/10.1038/srep29880 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhao P, Elks CM, Stephens JM (2014) The induction of lipocalin-2 expression in vivo and in vitro. J Biol Chem  https://doi.org/10.1074/jbc.M113.532234 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Capulli M, Rufo A, Teti A, Rucci N (2009) Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies A “mechanoresponsive osteoblast gene signature”. J Cell Biochem 107:240–252.  https://doi.org/10.1002/jcb.22120 CrossRefPubMedGoogle Scholar
  8. 8.
    Rucci N, Capulli M, Piperni SG et al (2014) Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis. J Bone Miner Res 30:1–34.  https://doi.org/10.1002/jbmr.2341 CrossRefGoogle Scholar
  9. 9.
    Warner SE, Sanford DA, Becker BA et al (2006) Botox induced muscle paralysis rapidly degrades bone. Bone 38:257–264.  https://doi.org/10.1016/j.bone.2005.08.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Capulli M, Olstad OK, Önnerfjord P et al (2014) The C-terminal domain of chondroadherin: a new regulator of osteoclast motility counteracting bone loss. J Bone Miner Res 29:1833–1846.  https://doi.org/10.1002/jbmr.2206 CrossRefPubMedGoogle Scholar
  11. 11.
    Lu Z, Ren Y, Wang G et al (2009) Biological behaviors and proteomics analysis of hybrid cell line EAhy926 and its parent cell line A549. J Exp Clin Cancer Res 28:16.  https://doi.org/10.1186/1756-9966-28-16 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Niemist A, Dunmire V, Yli-Harja O et al (2005) Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans Med Imaging 24:549–553.  https://doi.org/10.1109/TMI.2004.837339 CrossRefGoogle Scholar
  13. 13.
    Miller WJ, Kayton ML, Patton A et al (2004) A novel technique for quantifying changes in vascular density, endothelial cell proliferation and protein expression in response to modulators of angiogenesis using the chick chorioallantoic membrane (CAM) assay. J Transl Med 2:4.  https://doi.org/10.1186/1479-5876-2-4 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Veeriah V, Zanniti A, Paone R et al (2016) Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk. Sci Rep.  https://doi.org/10.1038/srep29880 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mi H, Muruganujan A, Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41:D377–D386.  https://doi.org/10.1093/nar/gks1118 CrossRefPubMedGoogle Scholar
  16. 16.
    Atik OS, Uslu MM, Eksioglu F, Satana T (2006) Etiology of senile osteoporosis: a hypothesis. Clin Orthop Relat Res 443:25–27.  https://doi.org/10.1097/01.blo.0000200235.76565.c8 CrossRefPubMedGoogle Scholar
  17. 17.
    Rufo A, Del Fattore A, Capulli M et al (2011) Mechanisms inducing low bone density in duchenne muscular dystrophy in mice and humans. J Bone Miner Res 26:1891–1903.  https://doi.org/10.1002/jbmr.410 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Matsumoto T, Sato S (2015) Stimulating angiogenesis mitigates the unloading-induced reduction in osteogenesis in early-stage bone repair in rats. Physiol Rep.  https://doi.org/10.14814/phy2.12335 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nardo L, Sandman DN, Virayavanich W et al (2013) Bone marrow changes related to disuse. Eur Radiol 23:3422–3431.  https://doi.org/10.1007/s00330-013-2943-6 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carlsson SIM, Bertilaccio MTS, Ascari I et al (2002) Modulation of human endothelial cell behaviour in simulated microgravity. J Gravit Physiol 9:P273–P274PubMedGoogle Scholar
  21. 21.
    Cotrupi S, Ranzani D, Maier JAM (2005) Impact of modeled microgravity on microvascular endothelial cells. Biochim Biophys Acta 1746:163–168.  https://doi.org/10.1016/j.bbamcr.2005.10.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Sommer G, Weise S, Kralisch S et al (2009) Lipocalin-2 is induced by interleukin-1 in murine adipocytes in vitro. J Cell Biochem 106:103–108.  https://doi.org/10.1002/jcb.21980 CrossRefPubMedGoogle Scholar
  23. 23.
    LeGrand A, Fermor B, Fink C, et al (2001) Interleukin-1, tumor necrosis factor ?, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci. Arthritis Rheum 44:2078–2083CrossRefGoogle Scholar
  24. 24.
    Capulli M, Ponzetti M, Maurizi A et al (2018) A complex role for Lipocalin 2 in bone metabolism: global ablation in mice induces osteopenia caused by an altered energy metabolism. J Bone Miner Res.  https://doi.org/10.1002/jbmr.3406 CrossRefPubMedGoogle Scholar
  25. 25.
    Radek KA, Baer LA, Eckhardt J et al (2008) Mechanical unloading impairs keratinocyte migration and angiogenesis during cutaneous wound healing. J Appl Physiol 104CrossRefGoogle Scholar
  26. 26.
    Peters S, Julien S, Heiduschka P et al (2007) Antipermeability and antiproliferative effects of standard and frozen bevacizumab on choroidal endothelial cells. Br J Ophthalmol 91:827–831.  https://doi.org/10.1136/bjo.2006.109702 CrossRefPubMedGoogle Scholar
  27. 27.
    Liu Y, Berendsen AD, Jia S et al (2012) Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest 122:3101–3113.  https://doi.org/10.1172/JCI61209 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Duan X, Bradbury SR, Olsen BR, Berendsen AD (2016) VEGF stimulates intramembranous bone formation during craniofacial skeletal development. Matrix Biol 52–54:127–140.  https://doi.org/10.1016/j.matbio.2016.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest 126:509–526.  https://doi.org/10.1172/JCI82585 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Capulli M, Rufo A, Teti A, Rucci N (2009) Global transcriptome analysis in mouse calvarial osteoblasts highlights sets of genes regulated by modeled microgravity and identifies A “mechanoresponsive osteoblast gene signature”. J Cell Biochem.  https://doi.org/10.1002/jcb.22120 CrossRefPubMedGoogle Scholar
  31. 31.
    Rucci N, Rufo A, Alamanou M, Teti A (2007) Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem 100:464–473.  https://doi.org/10.1002/jcb.21059 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vimal Veeriah
    • 1
  • Riccardo Paone
    • 1
  • Suvro Chatterjee
    • 2
    • 3
  • Anna Teti
    • 1
  • Mattia Capulli
    • 1
  1. 1.Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’aquilaItaly
  2. 2.Anna University K.B.Chandrashekar Research CentreChennaiIndia
  3. 3.Department of BiotechnologyAnna UniversityChennaiIndia

Personalised recommendations