Advertisement

Calcified Tissue International

, Volume 104, Issue 3, pp 285–300 | Cite as

Effect of Long-Term Green Tea Polyphenol Supplementation on Bone Architecture, Turnover, and Mechanical Properties in Middle-Aged Ovariectomized Rats

  • Chwan-Li ShenEmail author
  • Brenda J. Smith
  • Jiliang Li
  • Jay J. Cao
  • Xiao Song
  • Maria F. Newhardt
  • Kylie A. Corry
  • Michael D. Tomison
  • Lili Tang
  • Jia-Sheng Wang
  • Ming-Chien Chyu
Original Research

Abstract

We investigated the effects of 6-month green tea polyphenols (GTP) supplementation on bone architecture, turnover, and mechanical properties in middle-aged ovariectomized (OVX) rats. Female rats were sham-operated (n = 39, 13/group) or OVX (n = 143, 13/group). Sham-control and OVX-control rats (n = 39) receiving no GTP were assigned for sample collection at baseline, 3, or 6 months. The remaining OVX rats (n = 104) were randomized to 0.15%, 0.5%, 1%, and 1.5% (g/dL) GTP for 3 or 6 months. Blood and bone samples were collected. Relative to the OVX-control group, GTP (1% and 1.5%) lowered serum procollagen type 1 N-terminal propeptide at 3 and 6 months, C-terminal telopeptides of type I collagen at 3 months, and insulin-like growth factor-I at 6 months. GTP did not affect bone mineral content and density. At 6 months, no dose of GTP positively affected trabecular bone volume based on microCT, but a higher cortical thickness and improved biomechanical properties of the femur mid-diaphysis was observed in the 1.5% GTP-treated group. At 3 and 6 months, GTP (0.5%, 1%, and 1.5%) had lower rates of trabecular bone formation and resorption than the OVX-control group, but the inhibitory effects of GTP on periosteal and endocortical bone mineralization and formation at the tibial midshaft were only evident at 3 months. GTP at higher doses suppressed bone turnover in the trabecular and cortical bone of OVX rats and resulted in improved cortical bone structural and biomechanical properties, although it was not effective in preventing the ovariectomy-induced dramatic cancellous bone loss.

Keywords

Tea Osteoporosis Animals Bone microstructure Bone quality Bone matrix 

Notes

Acknowledgements

This study was supported by the National Center for Complementary and Integrative Health (NCCIH) of the National Institutes of Health under Grant U01AT006691 to Chwan-Li Shen. Jay Cao was supported by the Agricultural Research Service of the United States Department of Agriculture, #3062-51000-053-00D. We are grateful for the assistance of Dr. Gordon Brackee, Velvet Lee Finckbone, and Anna Rodriquez for sample collection. We thank Dr. Dale Dunn for his technical advising and support concerning histomorphometric analysis. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the NCCIH or the National Institutes of Health.

Compliance with Ethical Standards

Conflict of interest

Chwan-Li Shen, Brenda J. Smith, Jay J. Cao, Jiliang Li, Xiao Song, Maria F. Newhardt, Kylie A. Corry, Michael D. Tomison, Lili Tang, Jia-Sheng Wang, and Ming-Chien Chyu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures were approved by the local Institutional Animal Care and Use Committee.

References

  1. 1.
    Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS (2009) Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 44(4):684–690CrossRefGoogle Scholar
  2. 2.
    Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS (2008) Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int 19(7):979–990CrossRefGoogle Scholar
  3. 3.
    Shen CL, Cao JJ, Dagda RY, Tenner TE Jr, Chyu MC, Yeh JK (2011) Supplementation with green tea polyphenols improves bone microstructure and quality in aged, orchidectomized rats. Calcif Tissue Int 88(6):455–463CrossRefGoogle Scholar
  4. 4.
    Shen CL, Yeh JK, Cao JJ, Tatum OL, Dagda RY, Wang J-S (2010) Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model. J Nutr Biochem 21:968–974CrossRefGoogle Scholar
  5. 5.
    Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, Dagda RY, Chyu MC, Dunn DM, Wang JS (2011) Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos Int 22:327–337CrossRefGoogle Scholar
  6. 6.
    Shen CL, Syapin PJ, Graef JL, Smith BJ, Brackee G, Fowler AK, Segura I, Bergeson SE (2014) Alcohol-induced bone loss and quality during adolescence is improved by green tea polyphenols. J Clin Toxicol 7:004; Special issue title: Drug * Alcohol Abuse Google Scholar
  7. 7.
    Shen CL, Cao JJ, Dagda RY, Chanjaplammootil S, Lu C, Chyu MC, Gao W, Wang JS, Yeh JK (2012) Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats. Nutr Res 32(6):448–457CrossRefGoogle Scholar
  8. 8.
    Shen CL, Chyu MC, Cao JJ, Yeh JK (2013) Green tea polyphenols improve bone microarchitecture in high-fat-diet-induced obese female rats through suppressing bone formation and erosion. J Med Food 16(5):421–427CrossRefGoogle Scholar
  9. 9.
    Shen CL, Han J, Wang S, Chung E, Chyu MC, Cao JJ (2015) Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet. Nutr Res 35(12):1095–1105CrossRefGoogle Scholar
  10. 10.
    Shen CL, Chyu MC, Yeh JK, Zhang Y, Pence BC, Felton CK (2012) Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: a 6-month randomized placebo-controlled trial. Osteoporos Int 23(5):1541–1552CrossRefGoogle Scholar
  11. 11.
    Dostal AM, Arikawa A, Espejo L, Kurzer MS (2016) Long-term supplementation of green tea extract does not modify adiposity or bone mineral density in a randomized trial of overweight and obese postmenopausal women. J Nutr 146(2):256–264CrossRefGoogle Scholar
  12. 12.
    Iwaniec UT, Turner RT, Koo SI, Kaur R, Ho E, Wong CP et al (2009) Consumption of green tea extract results in osteopenia in growing male mice. J Nutr 139(10):1914–1919CrossRefGoogle Scholar
  13. 13.
    Smith BJ, Bu SY, Wang Y, Rendina E, Lim YF, Marlow D, Clarke SL, Cullen DM, Lucas EA (2014) A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat. Bone 58:151–159CrossRefGoogle Scholar
  14. 14.
    Nielsen FH (2004) Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. BioFactors 20:161–171CrossRefGoogle Scholar
  15. 15.
    Sun YX, Li L, Corry KA, Zhang P, Yang Y, Himes E, Mihuti CL, Nelson C, Dai G, Li J (2015) Deletion of Nrf2 reduces skeletal mechanical properties and decreases load-driven bone formation. Bone 74:1–9CrossRefGoogle Scholar
  16. 16.
    Parfitt AM, Drezner MJ, Glorieux FH, Kanis JA, Malluche H, Meunier PJ (1987) Bone histomorphometry: Standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610CrossRefGoogle Scholar
  17. 17.
    Shen CL, Brackee G, Song X, Tomison MD, Finckbone VL, Mitchell KT, Tang L, Chyu MC, Dunn DM, Wang JS (2017) Safety evaluation of green tea polyphenols consumption in middle-aged ovariectomized rat model. J Food Sci 82(9):2192–2220CrossRefGoogle Scholar
  18. 18.
    Takeda S, Smith SY, Tamura T, Saito H, Takahashi F, Samadfam R, Haile S, Doyle N, Endo K (2015) Long-term treatment with eldecalcitol (1α, 25-dihydroxy-2β- (3-hydroxypropyloxy) vitamin D3) suppresses bone turnover and leads to prevention of bone loss and bone fragility in ovariectomized rats. Calcif Tissue Int 96(1):45–55CrossRefGoogle Scholar
  19. 19.
    Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamrarn A, Piyachaturawat P (2013) Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats. PLoS ONE 8(11):e78739CrossRefGoogle Scholar
  20. 20.
    Ferreri SL, Talish R, Trandafir T, Qin YX (2011) Mitigation of bone loss with ultrasound induced dynamic mechanical signals in an OVX induced rat model of osteopenia. Bone 48(5):1095–1102CrossRefGoogle Scholar
  21. 21.
    Hamdi Kara I, Aydin S, Gemalmaz A, Aktürk Z, Yaman H, Bozdemir N et al (2007) Habitual tea drinking and bone mineral density in postmenopausal Turkish women: investigation of prevalence of postmenopausal osteoporosis in Turkey (IPPOT Study). Int J Vitam Nutr Res 77(6):389–397CrossRefGoogle Scholar
  22. 22.
    Muraki S, Yamamoto S, Ishibashi H, Oka H, Yoshimura N, Kawaguchi H et al (2007) Diet and lifestyle associated with increased bone mineral density: cross-sectional study of Japanese elderly women at an osteoporosis outpatient clinic. J Orthop Sci 12(4):317–320CrossRefGoogle Scholar
  23. 23.
    Hegarty VM, May HM, Khaw KT (2000) Tea drinking and bone mineral density in older women. Am J Clin Nutr 71(4):1003–1007CrossRefGoogle Scholar
  24. 24.
    Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ (2002) Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 162:1001–1006CrossRefGoogle Scholar
  25. 25.
    Hoover PA, Webber CE, Beaumont LF, Blake JM (1996) Postmenopausal bone mineral density: relationship to calcium intake, calcium absorption, residual estrogen, body composition, and physical activity. Can J Physiol Pharmacol 74(8):911–917CrossRefGoogle Scholar
  26. 26.
    Devine A, Hodgson JM, Dick IM, Prince RL (2007) Tea drinking is associated with benefits on bone density in older women. Am J Clin Nutr 86(4):1243–1247CrossRefGoogle Scholar
  27. 27.
    Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J et al (1995) Risk factors for hip fracture in European women: the MEDOS Study. J Bone Miner Res 10:1802–1815CrossRefGoogle Scholar
  28. 28.
    Kanis J, Johnell O, Gullberg B, Allander E, Elffors L, Ranstam J et al (1999) Risk factors for hip fracture in men from southern Europe: the MEDOS Study. Osteoporos Int 9:45–54CrossRefGoogle Scholar
  29. 29.
    Chen X, Pettinger MB, Ritenbaugh C, LaCroix AZ, Robbins J, Caan BJ et al (2003) Habitual tea consumption and risk of osteoporosis: a prospective study in the women’s health initiative observational cohort. Am J Epidemiol 158:772–781CrossRefGoogle Scholar
  30. 30.
    Shen CL, Yeh JK, Cao JJ, Wang JS (2009) Green tea and bone metabolism. Nutr Res 29(7):437–456CrossRefGoogle Scholar
  31. 31.
    Shen CL, Yeh JK, Cao JJ, Chyu MC, Wang JS (2011) Green tea and bone health: evidence from laboratory studies. Pharmacol Res 64(2):155–161CrossRefGoogle Scholar
  32. 32.
    Jin P, Li M, Xu G, Zhang K, Zheng LI, Zhao J (2015) Role of (−)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Exp Ther Med 10(2):828–834CrossRefGoogle Scholar
  33. 33.
    Kaida K, Honda Y, Hashimoto Y, Tanaka M, Baba S (2015) Application of green tea catechin for inducing the osteogenic differentiation of human dedifferentiated fat cells in vitro. Int J Mol Sci 16(12):27988–28000CrossRefGoogle Scholar
  34. 34.
    Nash LA, Ward WE (2016) Comparison of black, green and rooibos tea on osteoblast activity. Food Funct 7(2):1166–1175CrossRefGoogle Scholar
  35. 35.
    Kamon M, Zhao R, Sakamoto K (2009) Green tea polyphenol (−)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells. Cell Biol Int 34:109–116Google Scholar
  36. 36.
    Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol 77:17–25CrossRefGoogle Scholar
  37. 37.
    Lin RW, Chen CH, Wang YH, Ho ML, Hung SH, Chen IS, Wang GJ (2009) (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-kappaB. Biochem Biophys Res Commun 379:1033–1037CrossRefGoogle Scholar
  38. 38.
    Wang Y, Bikle DD, Chang W (2013) Autocrine and paracrine actions of IGF-I signaling in skeletal development. Bone Res 1(3):249–259CrossRefGoogle Scholar
  39. 39.
    Crane JL, Cao X (2014) Function of matrix IGF-1 in coupling bone resorption and formation. J Mol Med (Berl) 92(2):107–115CrossRefGoogle Scholar
  40. 40.
    Turner RT, Hannon KS, Greene VS, Bell NH (1995) Prednisone inhibits formation of cortical bone in sham-operated and ovariectomized female rats. Calcif Tissue Int 56(4):311–315CrossRefGoogle Scholar
  41. 41.
    Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46(11):1550–1555CrossRefGoogle Scholar
  42. 42.
    Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74CrossRefGoogle Scholar
  43. 43.
    Lin RW, Chen CH, Wang YH, Ho ML, Hung SH, Chen IS, Wang GJ (2009) (–)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-κB. Biochem Biophys Res Comm 379(4):1033–1037CrossRefGoogle Scholar
  44. 44.
    Hider RC, Liu ZD, Khodr HH (2001) Metal chelation of polyphenols. Meth Enzymol 335:190–203CrossRefGoogle Scholar
  45. 45.
    Kumamoto M, Sonda T, Nagayama K, Tabata M (2001) Effects of pH and metal ions on antioxidative activities of catechins. Biosci Biotechnol Biochem 65(1):126–132CrossRefGoogle Scholar
  46. 46.
    Wasserman WW, Fahl WE (1997) Functional antioxidant responsive elements. Proc Natl Acad Sci USA 94(10):5361–5366CrossRefGoogle Scholar
  47. 47.
    Choi EM, Hwang JK (2003) Effects of (+)-catechin on the function of osteoblastic cells. Biol Pharm Bull 26(4):523–526CrossRefGoogle Scholar
  48. 48.
    Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ (2005) Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16(12):2039–2045CrossRefGoogle Scholar
  49. 49.
    Vali B, Rao LG, El-Sohemy A (2007) Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J Nutr Biochem 18(5):341–347CrossRefGoogle Scholar
  50. 50.
    Mount JG, Muzylak M, Allen S, Althnaian T, McGonnell I, Price J (2006) Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Dev Dyn 235(5):1390–1399CrossRefGoogle Scholar
  51. 51.
    Yamaguchi M, Jie Z. Effect of polyphenols on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro. Biol Pharm Bull 2001;(12):1437–1439Google Scholar
  52. 52.
    Hafeez BB, Ahmed S, Wang N, Gupta S, Zhang A, Haqqi TM (2006) Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-κB. Toxicol Appl Pharmcol 216(1):11–19CrossRefGoogle Scholar
  53. 53.
    Tokuda H, Takai S, Hanai Y, Matsushima-Nishiwaki R, Hosoi T, Harada A, Ohta T, Kozawa O (2007) (–)-Epigallocatechin gallate suppresses endothelin-1-induced interleukin-6 synthesis in osteoblasts: Inhibition of p44/p42 MAP kinase activation. FEBS letters 581(7):1311–1316CrossRefGoogle Scholar
  54. 54.
    Tokuda H, Takai S, Hanai Y, Matsushima-Nishiwaki R, Yamauchi J, Harada A, Hosoi T, Ohta T, Kozawa O (2008) (-)-Epigallocatechin gallate inhibits basic fibroblast growth factor-stimulated interleukin-6 synthesis in osteoblasts. Horm Metab Res 40(10):674–678CrossRefGoogle Scholar
  55. 55.
    Hayashi K, Takai S, Matsushima-Nishiwaki R, Hanai Y, Kato K, Tokuda H, Kozawa O (2008) (−)-Epigallocatechin gallate reduces transforming growth factor β-stimulated HSP27 induction through the suppression of stress-activated protein kinase/c-Jun N-terminal kinase in osteoblasts. Life Sci 82(19):1012–1017CrossRefGoogle Scholar
  56. 56.
    Nakagawa H, Hasumi K, Takami M, Aida-Hyugaji S, Woo J-T, Nagai K, Ishikawa T, Wachi M (2007) Identification of two biologically crucial hydroxyl groups of (−)-epigallocatechin gallate in osteoclast culture. Biochem Pharmacol 73(1):34–43CrossRefGoogle Scholar
  57. 57.
    Nakagawa H, Wachi M, Woo J-T, Kato M, Kasai S, Takahashi F, Lee I-S, Nagai K (2002) Fenton reaction is primarily involved in a mechanism of (−)-epigallocatechin-3-gallate to induce osteoclastic cell death. Bioch Biophys Res Comm 292(1):94–101CrossRefGoogle Scholar
  58. 58.
    Yun JH, Pang EK, Kim CS, Yoo YJ, Cho KS, Chai JK, Kim CK, Choi SH (2004) Inhibitory effects of green tea polyphenol (−)-epigallocatechin gallate on the expression of matrix metalloproteinase-9 and on the formation of osteoclasts. J Periodontal Res 39(5):300–307CrossRefGoogle Scholar
  59. 59.
    Delaissé J-M, Eeckhout Y, Vaes G (1986) Inhibition of bone resorption in culture by (+)-catechin. Biochem Pharmocol 35(18):3091–3094CrossRefGoogle Scholar
  60. 60.
    Nash LA, Ward WE (2015) Tea and bone health: findings from human studies, potential mechanisms, and identification of knowledge gaps. Crit Rev Food Sci Nutr 57(8):1603–1617CrossRefGoogle Scholar
  61. 61.
    Myers G, Prince RL, Kerr DA, Devine A, Woodman RJ, Lewis JR, Hodgson JM (2015) Tea and flavonoid intake predict osteoporotic fracture risk in elderly Australian women: a prospective study. Am J Clin Nutr 102(4):958–965CrossRefGoogle Scholar
  62. 62.
    Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9(9):3312–3319Google Scholar
  63. 63.
    Shen CL, Brackee G, Song X, Tomison MD, Finckbone V, Mitchell KT, Tang L, Chyu MC, Dunn DM, Wang JS (2017) Safety evaluation of green tea polyphenols consumption in middle-aged ovariectomized rat model. J Food Sci 82(9):2192–2205CrossRefGoogle Scholar
  64. 64.
    Rizzoli R, Reginster JY (2011) Adverse drug reactions to osteoporosis treatments. Expert Rev Clin Pharmacol 4(5):593–604CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chwan-Li Shen
    • 1
    Email author
  • Brenda J. Smith
    • 2
  • Jiliang Li
    • 3
  • Jay J. Cao
    • 4
  • Xiao Song
    • 5
  • Maria F. Newhardt
    • 2
  • Kylie A. Corry
    • 3
  • Michael D. Tomison
    • 1
  • Lili Tang
    • 6
  • Jia-Sheng Wang
    • 6
  • Ming-Chien Chyu
    • 1
    • 7
  1. 1.Department of PathologyTexas Tech University Health Sciences CenterLubbockUSA
  2. 2.Department of Nutritional SciencesOklahoma State UniversityStillwaterUSA
  3. 3.Department of BiologyIndiana University-Purdue University IndianapolisIndianapolisUSA
  4. 4.USDA ARS Grand Forks Human Nutrition Research CenterGrand ForksUSA
  5. 5.Department of Epidemiology and BiostatisticsUniversity of GeorgiaAthensUSA
  6. 6.Department of Environmental Health ScienceUniversity of GeorgiaAthensUSA
  7. 7.Graduate Healthcare Engineering OptionTexas Tech UniversityLubbockUSA

Personalised recommendations