Calcified Tissue International

, Volume 103, Issue 6, pp 638–652 | Cite as

Deletion of the Transcription Factor PGC-1α in Mice Negatively Regulates Bone Mass

  • Graziana Colaianni
  • Luciana Lippo
  • Lorenzo Sanesi
  • Giacomina Brunetti
  • Monica Celi
  • Nunzio Cirulli
  • Giovanni Passeri
  • Janne Reseland
  • Ernestina Schipani
  • Maria Felicia Faienza
  • Umberto Tarantino
  • Silvia Colucci
  • Maria GranoEmail author
Original Research


Peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) is a transcription coactivator that interacts with a broad range of transcription factors involved in several biological responses. Here, we show that PGC1α plays a role in skeletal homeostasis since aged PGC1α-deficient mice (PGC1α−/−) display impaired bone structure. Micro-CT of the tibial mid-shaft showed a marked decrease of cortical thickness in PGC1α−/− (− 11.9%, p < 0.05) mice compared to wild-type littermate. Trabecular bone was also impaired in knock out mice which displayed lower trabecular thickness (Tb.Th) (− 5.9% vs PGC1α+/+, p < 0.05), whereas trabecular number (Tb.N) was higher than wild-type mice (+ 72% vs PGC1α+/+, p < 0.05), thus resulting in increased (+ 31.7% vs PGC1α+/+, p < 0.05) degree of anisotropy (DA), despite unchanged bone volume fraction (BV/TV). Notably, these impairments of cortical and trabecular bone led to a dramatic ~ 48.4% decrease in bending strength (p < 0.01). These changes in PGC1α−/− mice were paralleled by a significant increase in osteoclast number at the cortical bone surface and in serum level of the bone resorption marker, namely, C-terminal cross-linked telopeptides of type I collagen (CTX-I). We also found that in cortical bone, there was lower expression of mRNA codifying for the key bone-building protein Osteocalcin (Ocn). Interestingly, Collagen I mRNA expression was reduced in mesenchymal stem cells from bone marrow of PGC1α−/−, thus indicating that differentiation of osteoblast lineage is downregulated. Overall, results presented herein suggest that PGC1α may play a key role in bone metabolism.


Peroxisome proliferator-activated receptor-gamma coactivator Bone Osteocalcin Osteoclast Osteoblast Mitochondria 



We thank Dr. Antonio Moschetta (Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy) for the generous gift of PGC1α heterozygous mice to generate the colony. This work was supported in part by MIUR Grant ex60% (to M.G.), by SIOMMMS Grant (to G.C.) and by ERISTO (ESA) Grant (to M.G.).

Author Contribution

GC, LL, UT, SC, MG designed research; LL, LS, MC, NC performed research; GC, LL, GB, GP, JR, ES, MFF, UT, SC, MG analyzed, interpreted and discussed the data; and GC, LL, MG wrote the paper.

Compliance with Ethical Standards

Conflict of interest

Graziana Colaianni, Luciana Lippo, Lorenzo Sanesi, Giacomina Brunetti, Monica Celi, Nunzio Cirulli, Giovanni Passeri, Janne Reseland, Ernestina Schipani, Maria Felicia Faienza, Umberto Tarantino, Silvia Colucci, and Maria Grano declare that there is no conflict of interest regarding the publication of this paper.

Human and Animal Rights and Informed Consent

This study is in accordance with the European Law Implementation of Directive 2010/63/EU and all experimental protocols were reviewed and approved by the Veterinary Department of the Italian Ministry of Health (Project 522-2016PR). Experimental procedures have been carried out following the standard biosecurity and the institutional safety procedures. For this type of study formal consent is not required.

Supplementary material

223_2018_459_MOESM1_ESM.docx (17 kb)
Supplementary Table 1: Effect of PGC1α whole body deletion on cortical and trabecular bone of 3-months old mice. MicroCT analysis of tibia and femurs harvested from 3 months old PGC1α+/+ and PGC1α-/- male (♂) and female (♀) mice. Cortical bone parameters included cortical thickness (Ct.Th), polar moment of inertia (pMOI) and bone mineral density (BMD). Trabecular bone parameters included bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), degree of Anisotropy (DA), connectivity density (Conn. Density) and bone mineral density (BMD). Data are presented as mean ± SEM. n = 3–4 mice per group. *p < 0.05 versus PGC1α+/+ (DOCX 16 KB)
223_2018_459_MOESM2_ESM.docx (16 kb)
Supplementary Table 2: Sequence, accession number (NM_) and product length for each primer. Primer sequences, accession number (NM_) and the product length for each primer. All primers span an exon-exon junction. Three housekeeping genes (Glyceraldehyde 3-phosphate dehydrogenase, &#x03B2;2-microglobulin and &#x03B2;-actin) were chosen because they are normally stably expressed in bone and adipose tissues (DOCX 16 KB)


  1. 1.
    Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801CrossRefGoogle Scholar
  2. 2.
    Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 98(7):3820–3825CrossRefGoogle Scholar
  3. 3.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839CrossRefGoogle Scholar
  4. 4.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124CrossRefGoogle Scholar
  5. 5.
    Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1β in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278(33):30843–30848CrossRefGoogle Scholar
  6. 6.
    Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA (2003) PPARγ coactivator-1α expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol 284(6):C1669–C1677CrossRefGoogle Scholar
  7. 7.
    Ljubicic V, Joseph AM, Saleem A, Uguccioni G, Collu-Marchese M, Lai RY, Nguyen LM, Hood DA (2010) Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochem Biophys Acta 1800(3):223–234CrossRefGoogle Scholar
  8. 8.
    Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546(3):851–858CrossRefGoogle Scholar
  9. 9.
    Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Fed Am Soc Exp Biol 16(14):1879–1886PubMedGoogle Scholar
  10. 10.
    Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T (2000) cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 274(2):350–354CrossRefGoogle Scholar
  11. 11.
    Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131–138CrossRefGoogle Scholar
  12. 12.
    Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119(1):121–135CrossRefGoogle Scholar
  13. 13.
    Nervina JM, Magyar CE, Pirih FQ, Tetradis S (2006) PGC-1alpha is induced by parathyroid hormone and coactivates Nurr1-mediated promoter activity in osteoblasts. Bone 39(5):1018–1025CrossRefGoogle Scholar
  14. 14.
    D’Errico I, Salvatore L, Murzilli S, Lo Sasso G, Latorre D, Martelli N, Egorova AV, Polishuck R, Madeyski-Bengtson K, Lelliott C, Vidal-Puig AJ, Seibel P, Villani G, Moschetta A (2011) Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) is a metabolic regulator of intestinal epithelial cell fate. Proc Natl Acad Sci USA 108(16):6603–6608CrossRefGoogle Scholar
  15. 15.
    Uguccioni G, Hood DA (2011) The importance of PGC-1α in contractile activity-induced mitochondrial adaptations. Am J Physiol Endocrinol Metab 300(2):E361–E371CrossRefGoogle Scholar
  16. 16.
    Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468CrossRefGoogle Scholar
  17. 17.
    Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Soc 24:78–90Google Scholar
  18. 18.
    Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA 100:7111–7116CrossRefGoogle Scholar
  19. 19.
    Handschin C, Spiegelman BM (2011) PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. [Comment Lett] Cell Metab 13(4):351 (author reply 352).CrossRefGoogle Scholar
  20. 20.
    Brotto M, Johnson ML (2014) Endocrine crosstalk between muscle and bone. Curr Osteoporo Rep 12(2):135–141CrossRefGoogle Scholar
  21. 21.
    Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, Di Benedetto A, Brunetti G, Yuen T, Sun L, Reseland JE, Colucci S, New MI, Zaidi M, Cinti S, Grano M (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112(39):12157–12162CrossRefGoogle Scholar
  22. 22.
    Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G (2016) Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 23(6):1078–1092CrossRefGoogle Scholar
  23. 23.
    Kersh ME, Zysset PK, Pahr DH, Wolfram U, Larsson D, Pandy MG (2013) Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J Biomech 46(15):2659–2666CrossRefGoogle Scholar
  24. 24.
    Chappard C, Brunet-Imbault B, Lemineur G, Giraudeau B, Basillais A, Harba R, Benhamou CL (2005) Anisotropy changes in post-menopausal osteoporosis: characterization by a new index applied to trabecular bone radiographic images. Osteoporos Int 16(10):1193–1202CrossRefGoogle Scholar
  25. 25.
    Singh M, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52(3):457–467CrossRefGoogle Scholar
  26. 26.
    Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13(4):278–287CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Ma K, Sadana P, Chowdhury F, Gaillard S, Wang F, McDonnell DP, Unterman TG, Elam MB, Park EA (2006) Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J Biol Chem 281:39897–39906CrossRefGoogle Scholar
  28. 28.
    Wang H, Wang J (2013) Estrogen-related receptor alpha interacts cooperatively with peroxisome proliferator-activated receptor-gamma coactivator-1alpha to regulate osteocalcin gene expression. Cell Biol Int 37(11):1259–1265PubMedGoogle Scholar
  29. 29.
    Florencio-Silva R, Rodrigues da Silva Sasso G, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Colaianni G, Brunetti G, Faienza MF, Colucci S, Grano M (2014) Osteoporosis and obesity: role of Wnt pathway in human and murine models. World J Orthop 5(3):242–246CrossRefGoogle Scholar
  31. 31.
    Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A (2013) Marrow fat and bone-new perspectives. J Clin Endocrinol Metab 98(3):935–945CrossRefGoogle Scholar
  32. 32.
    Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML (2010) Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res 25:2078–2088CrossRefGoogle Scholar
  33. 33.
    Bredella MA, Fazeli PK, Miller KK, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A (2009) Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab 94(6):2129–2136CrossRefGoogle Scholar
  34. 34.
    Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab 302(1):E19–E31CrossRefGoogle Scholar
  35. 35.
    Karsenty G, Oury F (2012) Biology without walls: the novel endocrinology of bone. Annu Rev Physiol 74:87–105CrossRefGoogle Scholar
  36. 36.
    Isaia GC, D’Amelio P, Di Bella S, Tamone C (2005) Is leptin the link between fat and bone mass? J Endocrinol Investig 28(10 Suppl):61–65Google Scholar
  37. 37.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469CrossRefGoogle Scholar
  38. 38.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111(3):305–317CrossRefGoogle Scholar
  39. 39.
    Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, DePinho RA, Guo XE, Mann JJ, Karsenty G (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17(6):901–915CrossRefGoogle Scholar
  40. 40.
    Rowe GC, Arany Z (2014) Genetic models of PGC-1 and glucose metabolism and homeostasis. Rev Endocr Metab Disord 15(1):21–29CrossRefGoogle Scholar
  41. 41.
    Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Graziana Colaianni
    • 1
  • Luciana Lippo
    • 1
    • 8
  • Lorenzo Sanesi
    • 1
  • Giacomina Brunetti
    • 2
  • Monica Celi
    • 3
  • Nunzio Cirulli
    • 2
  • Giovanni Passeri
    • 4
  • Janne Reseland
    • 5
  • Ernestina Schipani
    • 6
  • Maria Felicia Faienza
    • 7
  • Umberto Tarantino
    • 3
  • Silvia Colucci
    • 2
  • Maria Grano
    • 1
    Email author
  1. 1.Department of Emergency and Organ TransplantationUniversity of BariBariItaly
  2. 2.Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of BariBariItaly
  3. 3.Department of Orthopedics and TraumatologyTor Vergata University of RomeRomeItaly
  4. 4.Department of Clinical and Experimental MedicineUniversity of ParmaParmaItaly
  5. 5.Department of Biomaterials, Institute for Clinical DentistryUniversity of OsloOsloNorway
  6. 6.Departments of Medicine and Orthopaedic SurgeryUniversity of MichiganAnn ArborUSA
  7. 7.Department of Biomedical Science and Human Oncology, Pediatric UnitUniversity of BariBariItaly
  8. 8.PhD School in Tissue and Organ Transplantation and Cellular Therapies, Department of Emergency and Organ TransplantationSchool of Medicine-University of BariBariItaly

Personalised recommendations