Advertisement

Calcified Tissue International

, Volume 102, Issue 4, pp 433–442 | Cite as

Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis

  • Gregory J. Grosicki
  • Roger A. Fielding
  • Michael S. LustgartenEmail author
Review

Abstract

Skeletal muscle is a highly plastic tissue that plays a central role in human health and disease. Aging is associated with a decrease in muscle mass and function (sarcopenia) that is associated with a loss of independence and reduced quality of life. Gut microbiota, the bacteria, archaea, viruses, and eukaryotic microbes residing in the gastrointestinal tract are emerging as a potential contributor to age-associated muscle decline. Specifically, advancing age is characterized by a dysbiosis of gut microbiota that is associated with increased intestinal permeability, facilitating the passage of endotoxin and other microbial products (e.g., indoxyl sulfate) into the circulation. Upon entering the circulation, LPS and other microbial factors promote inflammatory signaling and skeletal muscle changes that are hallmarks of the aging muscle phenotype. This review will summarize existing literature suggesting cross-talk between gut microbiota and skeletal muscle health, with emphasis on the significance of this axis for mediating changes in aging skeletal muscle size, composition, and function.

Keywords

Skeletal muscle Gut microbiota Aging Inflammation Sarcopenia 

Notes

Funding

These ideas are based on work supported by the U.S. Department of Agriculture (USDA), under agreement No. 58-1950-4-003. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the USDA. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. M.S.L. is supported by NIA K01 award #5K01AG050700-02.

Author Contributions

RAF proposed writing the manuscript. MSL and GJG conducted the literature search. GJG drafted the manuscript. All authors edited, revised, and approved the manuscript.

Conflict of interest

Dr. Fielding reports grants, personal fees, and other from Axcella Health; personal fees from Cytokinetics; grants and personal fees from Biophytis; personal fees from Amazentis; grants and personal fees from Nestlé; grants and personal fees from Astellas; personal fees from Glaxo Smithkline, outside the submitted work.

References

  1. 1.
    Guridi M, Tintignac LA, Lin S, Kupr B, Castets P, Ruegg MA (2015) Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21. Sci Signal 8:113CrossRefGoogle Scholar
  2. 2.
    Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406PubMedCrossRefGoogle Scholar
  3. 3.
    Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA, Schiaffino S (2006) Computational reconstruction of the human skeletal muscle secretome. Proteins 62:776–792PubMedCrossRefGoogle Scholar
  4. 4.
    Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31:69–75PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Alexis E, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Luke K, Clemente JC, Treuren WV, Walters WA (2014) Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science 341:1–22Google Scholar
  7. 7.
    Sender R, Fuchs S (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Rajilic-Stojanovic M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea C, Watkins C, Dempsey E, Mattivi F, Tuohy K, Ross RP, Ryan CA, O’Toole P, Stanton C (2017) Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, Beiko RG (2014) Microbial shifts in the aging mouse gut. Microbiome 2:50PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, Schertzer JDL, Maggie J, Davidson DJ, Verd EF, Surette MG, Bowdish D (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21:455–466PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rampelli S, Candela M, Turroni S, Collino EB, Franceschi C, O’Toole PW, Brigidi P (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 5:902–912PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yu LX, Yan HX, Liu Q, Yang W, Wu HP, Dong W, Tang L, Lin Y, He YQ, Zou SS, Wang C, Zhang HL, Cao GW, Wu MC, Wang HY (2010) Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52:1322–1333PubMedCrossRefGoogle Scholar
  17. 17.
    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Ferrie J, Gibson GR, Casteilla L, Delzenne NM, Alessi MC (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772PubMedCrossRefGoogle Scholar
  19. 19.
    Bindels LB, Beck R, Schakman O, Martin JC, de Backer F, Sohet FM, Dewulf EM, Pachikian BD, Neyrinck AM, Thissen JP, Verrax J, Calderon PB, Pot B, Grangette C, Cani PD, Scott KP, Delzenne NM (2012) Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS ONE 7:1–10CrossRefGoogle Scholar
  20. 20.
    Lustgarten MS (2016) Classifying aging as a disease: the role of microbes. Front Genet 7:212PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28:203–209PubMedPubMedCentralGoogle Scholar
  22. 22.
    Vajro P, Paolella G, Fasano A (2013) Microbiota and gut-liver axis: a mini-review on their influences on obesity and obesity related liver disease. J Pediatr Gastroenterol 56:461–468CrossRefGoogle Scholar
  23. 23.
    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256PubMedCrossRefGoogle Scholar
  25. 25.
    Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI (2013) Gut microbiomes of malawian twin pairs discordant for kwashiorkor. Science 339:548–554PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vrieze A, Nood E, Holleman F, Salojärvi J, Kootte R, Bartelsman J, Dallinga G, Thie Ackermans M, Serlie M, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg J, Bloks V, Groen A, Heilig H, Zoetendal E, Stroes E, De Vos W, Hoekstra J, Nieuwdorp M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916PubMedCrossRefGoogle Scholar
  28. 28.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCrossRefGoogle Scholar
  29. 29.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J-M, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker J-D, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O, Guedon E, Delorme C, Layec S, Khaci G, van de Guchte M, Vandemeulebrouck G, Jamet A, Dervyn R, Sanchez N, Maguin E, Haimet F, Winogradski Y, Cultrone A, Leclerc M, Juste C, Blottière H, Pelletier E, LePaslier D, Artiguenave F, Bruls T, Weissenbach J, Turner K, Parkhill J, Antolin M, Manichanh C, Casellas F, Boruel N, Varela E, Torrejon A, Guarner F, Denariaz G, Derrien M, van Hylckama Vlieg JET, Veiga P, Oozeer R, Knol J, Rescigno M, Brechot C, M’Rini C, Mérieux A, Yamada T (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546PubMedCrossRefGoogle Scholar
  30. 30.
    Choi Y, Kwon Y, Kim D-K, Jeon J, Jang SC, Wang T, Ban M, Kim M-H, Jeon SG, Kim M-S, Choi CS, Jee Y-K, Gho YS, Ryu SH, Kim Y-K (2015) Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Sci Rep 5:15878PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271:665–668PubMedCrossRefGoogle Scholar
  33. 33.
    Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399PubMedCrossRefGoogle Scholar
  34. 34.
    Gulhane M, Murray L, Lourie R, Tong H, Sheng YH, Wang R, Kang A, Schreiber V, Wong KY, Magor G, Denman S, Begun J, Florin TH, Perkins A, Cuiv PO, McGuckin MA, Hasnain SZ (2016) High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Sci Rep 6:28990PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Guo S, Al-Sadi R, Said HM, Ma TY (2013) Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 182:375–387PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054PubMedCrossRefGoogle Scholar
  37. 37.
    Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N (2013) Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS ONE 8:e63983PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sato E, Mori T, Mishima E, Suzuki A, Sugawara S, Kurasawa N, Saigusa D, Miura D, Morikawa-Ichinose T, Saito R, Oba-Yabana I, Oe Y, Kisu K, Naganuma E, Koizumi K, Mokudai T, Niwano Y, Kudo T, Suzuki C, Takahashi N, Sato H, Abe T, Niwa T, Ito S (2016) Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep 6:36618PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, Huang ES, Korytkowski MT, Munshi MN, Odegard PS, Pratley RE, Swift CS (2012) Diabetes in older adults. Diabetes Care 35:2650–2664PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Brown AF, Mangione CM, Saliba D, Sarkisian CA (2003) Guidelines for improving the care of the older person with diabetes mellitus. J Am Geriatr Soc 51:S265–S280PubMedCrossRefGoogle Scholar
  42. 42.
    Ghosh S, Lertwattanarak R, Garduno Jde J, Galeana JJ, Li J, Zamarripa F, Lancaster JL, Mohan S, Hussey S, Musi N (2015) Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol A Biol Sci Med Sci 70:232–246PubMedCrossRefGoogle Scholar
  43. 43.
    Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692PubMedCrossRefGoogle Scholar
  44. 44.
    Jensen GL (2008) Inflammation: roles in aging and sarcopenia. J Parenter Enteral Nutr 32:656–659CrossRefGoogle Scholar
  45. 45.
    Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M (2005) Sarcopenia, obesity, and inflammation–results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am J Clin Nutr 82:428–434PubMedCrossRefGoogle Scholar
  46. 46.
    Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555PubMedCrossRefGoogle Scholar
  47. 47.
    Franceschi C, Bonafe M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18:1717–1720PubMedCrossRefGoogle Scholar
  48. 48.
    Maggio M, Basaria S, Ble A, Lauretani F, Bandinelli S, Ceda GP, Valenti G, Ling SM, Ferrucci L (2006) Correlation between testosterone and the inflammatory marker soluble interleukin-6 receptor in older men. J Clin Endocrinol Metab 91:345–347PubMedCrossRefGoogle Scholar
  49. 49.
    Cavanagh MM, Weyand CM, Goronzy JJ (2012) Chronic inflammation and aging: DNA damage tips the balance. Curr Opin Immunol 24:488–493PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Munoz-Najar U, Sedivy JM (2011) Epigenetic control of aging. Antioxid Redox Signal 14:241–259PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cevenini E, Caruso C, Candore G, Capri M, Nuzzo D, Duro G, Rizzo C, Colonna-Romano G, Lio D, Di Carlo D, Palmas MG, Scurti M, Pini E, Franceschi C, Vasto S (2010) Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des 16:609–618PubMedCrossRefGoogle Scholar
  52. 52.
    Callahan LA, Supinski GS (2009) Sepsis-induced myopathy. Crit Care Med 37:S354–S367PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Frost RA, Nystrom GJ, Lang CH (2002) Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am J Physiol Regul Integr Comp Physiol 283:R698–R709PubMedCrossRefGoogle Scholar
  54. 54.
    Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P, Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54:M357–M364PubMedCrossRefGoogle Scholar
  55. 55.
    Maggio M, Guralnik JM, Longo DL, Ferrucci L (2006) Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 61:575–584PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB (2005) TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 19:362–370PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Baxter GT, Kuo RC, Jupp OJ, Vandenabeele P, MacEwan DJ (1999) Tumor necrosis factor-alpha mediates both apoptotic cell death and cell proliferation in a human hematopoietic cell line dependent on mitotic activity and receptor subtype expression. J Biol Chem 274:9539–9547PubMedCrossRefGoogle Scholar
  58. 58.
    Haddad F, Zaldivar F, Cooper DM (1985) Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98:911–917CrossRefGoogle Scholar
  59. 59.
    Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19:422–424PubMedCrossRefGoogle Scholar
  60. 60.
    Wyczalkowska-Tomasik A, Czarkowska-Paczek B, Giebultowicz J, Wroczynski P, Paczek L (2017) Age-dependent increase in serum levels of indoxyl sulphate and p-cresol sulphate is not related to their precursors: tryptophan and tyrosine. Geriatr Gerontol Int 17:1022–1026PubMedCrossRefGoogle Scholar
  61. 61.
    Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, Ishima Y, Kotani S, Nakajima M, Tanaka M, Matsushita K, Fukagawa M, Otagiri M, Maruyama T (2016) Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep 6:32084PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lustgarten MS, Price LL, Chale A, Fielding RA (2014) Metabolites related to gut bacterial metabolism, peroxisome proliferator-activated receptor-alpha activation, and insulin sensitivity are associated with physical function in functionally-limited older adults. Aging Cell 13:918–925PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chen YM, Wei L, Chiu YS, Hsu YJ, Tsai TY, Wang MF, Huang CC (2016) Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice. Nutrients 8:205PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Bindels LB, Delzenne NM, Cani PD, Walter J (2015) Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 12:303–310PubMedCrossRefGoogle Scholar
  65. 65.
    Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, Van Holle A, Francois P, de Vos WM, Delzenne NM, Schrenzel J, Cani PD (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bindels LB, Neyrinck AM, Claus SP, Le Roy CI, Grangette C, Pot B, Martinez I, Walter J, Cani PD, Delzenne NM (2016) Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J 10:1456–1470PubMedCrossRefGoogle Scholar
  68. 68.
    Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick JS (2009) The effects of ageing on the colonic bacterial microflora in adults. Z Gastroenterol 47:653–658PubMedCrossRefGoogle Scholar
  69. 69.
    Griffiths EA, Duffy LC, Schanbacher FL, Qiao H, Dryja D, Leavens A, Rossman J, Rich G, Dirienzo D, Ogra PL (2004) In vivo effects of bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in Balb/c mice. Dig Dis Sci 49:579–589PubMedCrossRefGoogle Scholar
  70. 70.
    Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383PubMedCrossRefGoogle Scholar
  71. 71.
    Morales MG, Olguin H, Di Capua G, Brandan E, Simon F, Cabello-Verrugio C (2015) Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism. Clin Sci (Lond) 129:461–476CrossRefGoogle Scholar
  72. 72.
    Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Van Remmen H (2015) The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14:957–970PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Eloe-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B, Mahurkar A, Ravel J, Haverkamp M, Fiorino AM, Botelho C, Andreyeva I, Hibberd PL, Fraser CM (2015) Functional dynamics of the gut microbiome in elderly people during probiotic consumption. MBio. doi: 10.1128/mBio.00231-15 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 88:1438–1446PubMedGoogle Scholar
  76. 76.
    Trombetti A, Reid KF, Hars M, Herrmann FR, Pasha E, Phillips EM, Fielding RA (2016) Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. Osteoporos Int 27:463–471PubMedCrossRefGoogle Scholar
  77. 77.
    Reid KF, Naumova EN, Carabello RJ, Phillips EM, Fielding RA (2008) Lower extremity muscle mass predicts functional performance in mobility-limited elders. J Nutr Health Aging 12:493–498PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61:1059–1064PubMedCrossRefGoogle Scholar
  79. 79.
    Grosicki GJ, Standley RA, Murach KA, Raue U, Minchev K, Coen PM, Newman AB, Cummings S, Harris T, Kritchevsky S, Goodpaster BH (1985) Trappe S (2016) Improved single muscle fiber quality in the oldest-old. J Appl Physiol 121:878–884CrossRefGoogle Scholar
  80. 80.
    Lustgarten MS, Price LL, Fielding RA (2015) Analytes and metabolites associated with muscle quality in young, healthy adults. Med Sci Sports Exerc 47:1659–1664PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E (1985) Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol 90:2157–2165CrossRefGoogle Scholar
  82. 82.
    Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50:897–904PubMedCrossRefGoogle Scholar
  83. 83.
    Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5:e10667PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    van Tongeren S, Slaets J, Harmsen H, Welling G (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71:6438–6442PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Collins KH, Paul HA, Hart DA, Reimer RA, Smith IC, Rios JL, Seerattan RA, Herzog W (2016) A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep 6:37278PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fang S, Xiong X, Su Y, Huang L, Chen C (2017) 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol 17:162PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Liu Y, Tang GY, Tang RB, Peng YF, Li W (2010) Assessment of bone marrow changes in postmenopausal women with varying bone densities: magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin Med J (Engl) 123:1524–1527Google Scholar
  88. 88.
    Agrawal K, Agarwal Y, Chopra RK, Batra A, Chandra R, Thukral BB (2015) Evaluation of MR spectroscopy and diffusion-weighted MRI in postmenopausal bone strength. Cureus 7:e327PubMedPubMedCentralGoogle Scholar
  89. 89.
    Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR (2014) Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229:1822–1830PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ (1985) Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88:1321–1326CrossRefGoogle Scholar
  91. 91.
    Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol Respir Environ Exerc Physiol 46:451–456PubMedGoogle Scholar
  92. 92.
    Korhonen MT, Cristea A, Alen M, Hakkinen K, Sipila S, Mero A, Viitasalo JT, Larsson L (1985) Suominen H (2006) Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol 101:906–917CrossRefGoogle Scholar
  93. 93.
    Reid KF, Fielding RA (2012) Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 40:4–12PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yan H, Diao H, Xiao Y, Li W, Yu B, He J, Yu J, Zheng P, Mao X, Luo Y, Zeng B, Wei H, Chen D (2016) Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Sci Rep 6:31786PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bean JF, Leveille SG, Kiely DK, Bandinelli S, Guralnik JM, Ferrucci L (2003) A comparison of leg power and leg strength within the InCHIANTI study: which influences mobility more? J Gerontol A Biol Sci Med Sci 58:728–733PubMedCrossRefGoogle Scholar
  96. 96.
    Peng L, Li ZR, Green RS, Holzman IR, Lin J (2009) Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 139:1619–1625PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Cox MA, Jackson J, Stanton M, Rojas-Triana A, Bober L, Laverty M, Yang X, Zhu F, Liu J, Wang S, Monsma F, Vassileva G, Maguire M, Gustafson E, Bayne M, Chou CC, Lundell D, Jenh CH (2009) Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J Gastroenterol 15:5549–5557PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 9:178–184CrossRefGoogle Scholar
  99. 99.
    Jeffery IB, Lynch DB, O’Toole PW (2016) Composition and temporal stability of the gut microbiota in older persons. ISME J 10:170–182PubMedCrossRefGoogle Scholar
  100. 100.
    Buigues C, Fernández-Garrido J, Pruimboom L, Hoogland AJ, Navarro-Martínez R, Martínez-Martínez M, Verdejo Y, Mascarós MC, Peris C, Cauli O (2016) Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci 17:E392CrossRefGoogle Scholar
  101. 101.
    Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63:1913–1920PubMedCrossRefGoogle Scholar
  102. 102.
    Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, Ahmadi-Vand Z, Marsden KR, Gibson DL (2016) Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4:42PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD (2016) High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 310:E982–E993PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lira FS, Rosa JC, Pimentel GD, Souza HA, Caperuto EC, Carnevali LC, Seelaender M, Damaso AR, Oyama LM, de Mello MT, Santos RV (2010) Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids Health Dis 9:82PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Gregory J. Grosicki
    • 1
  • Roger A. Fielding
    • 1
  • Michael S. Lustgarten
    • 1
    Email author
  1. 1.Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA

Personalised recommendations