Advertisement

Calcified Tissue International

, Volume 102, Issue 1, pp 105–116 | Cite as

Homozygous Dkk1 Knockout Mice Exhibit High Bone Mass Phenotype Due to Increased Bone Formation

  • Michelle M. McDonald
  • Alyson Morse
  • Aaron Schindeler
  • Kathy Mikulec
  • Lauren Peacock
  • Tegan Cheng
  • Justin Bobyn
  • Lucinda Lee
  • Paul A. Baldock
  • Peter I. Croucher
  • Patrick P. L. Tam
  • David G. Little
Original Research

Abstract

Wnt antagonist Dkk1 is a negative regulator of bone formation and Dkk1 +/ heterozygous mice display a high bone mass phenotype. Complete loss of Dkk1 function disrupts embryonic head development. Homozygous Dkk1 / mice that were heterozygous for Wnt3 loss of function mutation (termed Dkk1 KO) are viable and allowed studying the effects of homozygous inactivation of Dkk1 on bone formation. Dkk1 KO mice showed a high bone mass phenotype exceeding that of heterozygous mice as well as a high incidence of polydactyly and kinky tails. Whole body bone density was increased in the Dkk1 KO mice as shown by longitudinal dual-energy X-ray absorptiometry. MicroCT analysis of the distal femur revealed up to 3-fold increases in trabecular bone volume and up to 2-fold increases in the vertebrae, compared to wild type controls. Cortical bone was increased in both the tibiae and vertebrae, which correlated with increased strength in tibial 4-point bending and vertebral compression tests. Dynamic histomorphometry identified increased bone formation as the mechanism underlying the high bone mass phenotype in Dkk1 KO mice, with no changes in bone resorption. Mice featuring only Wnt3 heterozygosity showed no evident bone phenotype. Our findings highlight a critical role for Dkk1 in the regulation of bone formation and a gene dose-dependent response to loss of DKK1 function. Targeting Dkk1 to enhance bone formation offers therapeutic potential for osteoporosis.

Keywords

Dkk1 Wnt-signalling Bone High bone mass Knockout model 

Notes

Compliance with Ethical Standards

Conflict of interest

Drs. Aaron Schindeler and David G. Little report grants and non-financial support from Novartis Pharma, grants from N8 Medical, grants from Celgene, grants and non-financial support from Amgen Inc, outside the submitted work. Dr. Peter I. Croucher reports non-financial support from Novartis Pharma and grants from Amgen Inc outside the submitted work. Dr. Tegan Cheng receives financial support from Hyundai Help for Kids. Michelle M. McDonald, Alyson Morse, Kathy Mikulec, Lauren Peacock, Justin Bobyn, Lucinda Lee, Paul A. Baldock, and Patrick P. L. Tam declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

No patients or patient samples were used in this study. Animal studies were approved by the Southwestern Area Health Service Animal Ethics Committee (AEC) and The Children’s Hospital at Westmead/Children’s Medical Research Institute AEC.

References

  1. 1.
    Levasseur R, Lacombe D, de Vernejoul MC (2005) LRP5 mutations in osteoporosis-pseudoglioma syndrome and high-bone-mass disorders. Joint Bone Spine 72(3):207–214CrossRefPubMedGoogle Scholar
  2. 2.
    Johnson ML (2004) The high bone mass family–the role of Wnt/Lrp5 signaling in the regulation of bone mass. J Musculoskelet Neuronal Interact 4(2):135–138PubMedGoogle Scholar
  3. 3.
    Wang C, Zhang G, Gu M, Zhou Z, Cao X (2014) Polymorphism of the low-density lipoprotein receptor-related protein 5 gene and fracture risk. Int J Clin Exp Med 7(12):5097–5103PubMedPubMedCentralGoogle Scholar
  4. 4.
    Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5(2):73–80CrossRefPubMedGoogle Scholar
  5. 5.
    Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869CrossRefPubMedGoogle Scholar
  6. 6.
    Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25(57):7469–7481CrossRefPubMedGoogle Scholar
  7. 7.
    Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS ONE 4(11):e7930CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391(6665):357–362CrossRefPubMedGoogle Scholar
  9. 9.
    Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Izpisúa Belmonte JC, Westphal H (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1(3):423–434CrossRefPubMedGoogle Scholar
  10. 10.
    Daoussis D, Andonopoulos AP (2011) The emerging role of Dickkopf-1 in bone biology: is it the main switch controlling bone and joint remodeling? Semin Arthritis Rheum 41(2):170–177CrossRefPubMedGoogle Scholar
  11. 11.
    Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494CrossRefPubMedGoogle Scholar
  12. 12.
    Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc-Royer I, Vayssière B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21(6):934–945CrossRefPubMedGoogle Scholar
  13. 13.
    Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Ominsky MS, Zhu Ke H, Li X, Richards WG (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39(4):754–766CrossRefPubMedGoogle Scholar
  14. 14.
    Yao GQ, Wu JJ, Troiano N, Insogna K (2011) Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice. J Bone Miner Metab 29(2):141–148CrossRefPubMedGoogle Scholar
  15. 15.
    MacDonald BT, Adamska M, Meisler MH (2004) Hypomorphic expression of Dkk1 in the doublebridge mouse: dose dependence and compensatory interactions with Lrp6. Development 131(11):2542–2552CrossRefGoogle Scholar
  16. 16.
    MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X, Hauschka PV (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41(3):331–339CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lewis SL, Khoo PL, De Young RA, Steiner K, Wilcock C, Mukhopadhyay M, Westphal H, Jamieson RV, Robb L, Tam PP (2008) Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135(10):1791–1801CrossRefPubMedGoogle Scholar
  18. 18.
    Fossat N, Jones V, Garcia-Garcia MJ, Tam PP (2012) Modulation of WNT signaling activity is key to the formation of the embryonic head. Cell Cycle 11(1):26–32CrossRefPubMedGoogle Scholar
  19. 19.
    Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22(4):361–365CrossRefPubMedGoogle Scholar
  20. 20.
    Koide M, Kobayashi Y, Yamashita T, Uehara S, Nakamura M, Hiraoka BY, Ozaki Y, Iimura T, Yasuda H, Takahashi N, Udagawa N (2017) Bone formation is coupled to resorption via suppression of sclerostin expression by osteoclasts. J Bone Miner Res. doi: 10.1002/jbmr.3175 PubMedGoogle Scholar
  21. 21.
    Mo XB, Lu X, Zhang YH, Zhang ZL, Deng FY, Lei SF (2015) Gene-based association analysis identified novel genes associated with bone mineral density. PLoS ONE 10(3):e0121811CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou F, Meng S, Song H, Claret FX (2013) Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev 27(6):261–267CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114(2):371–379CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD Jr, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI (2009) Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 24(3):425–436CrossRefPubMedGoogle Scholar
  25. 25.
    Politou MC, Heath DJ, Rahemtulla A, Szydlo R, Anagnostopoulos A, Dimopoulos MA, Croucher PI, Terpos E (2006) Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Politou Int J Cancer. 119(7):1728–1731CrossRefPubMedGoogle Scholar
  26. 26.
    Iyer SP, Beck JT, Stewart AK, Shah J, Kelly KR, Isaacs R, Bilic S, Sen S, Munshi NC (2014) A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol 167(3):366–375CrossRefPubMedGoogle Scholar
  27. 27.
    Ke HZ, Richards WG, Li X, Ominsky MS (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33(5):747–783CrossRefPubMedGoogle Scholar
  28. 28.
    Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, Salimi-Moosavi H, Asuncion FJ, Li C, Sun B, Tan HL, Zhang L, Han CY, Case R, Duguay AN, Grisanti M, Stevens J, Pretorius JK, Pacheco E, Jones H, Chen Q, Soriano BD, Wen J, Heron B, Jacobsen FW, Brisan E, Richards WG, Ke HZ, Ominsky MS (2016) A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 7:11505CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Salinas PC, Fletcher C, Copeland NG, Jenkins NA, Nusse R (1994) Maintenance of Wnt-3 expression in Purkinje cells of the mouse cerebellum depends on interactions with granule cells. Development 120(5):1277–1286PubMedGoogle Scholar
  30. 30.
    Glantschnig H, Hampton RA, Lu P, Zhao JZ, Vitelli S, Huang L et al (2010) Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem 285(51):40135–40147CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tai N, Inoue D (2014) New development in osteoporosis treatment. Anti-Dickkopf1 (Dkk1) antibody as a bone anabolic agent for the treatment of osteoporosis. Clin Calcium 24(1):75–83PubMedGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Australia 2017

Authors and Affiliations

  • Michelle M. McDonald
    • 1
    • 2
  • Alyson Morse
    • 1
    • 3
  • Aaron Schindeler
    • 1
    • 3
  • Kathy Mikulec
    • 1
  • Lauren Peacock
    • 1
  • Tegan Cheng
    • 1
    • 3
  • Justin Bobyn
    • 1
    • 3
  • Lucinda Lee
    • 1
    • 3
  • Paul A. Baldock
    • 2
  • Peter I. Croucher
    • 2
  • Patrick P. L. Tam
    • 4
    • 5
  • David G. Little
    • 1
    • 3
  1. 1.Orthopaedic Research & Biotechnology UnitThe Children’s Hospital at WestmeadWestmeadAustralia
  2. 2.Bone Biology DivisionThe Garvan Institute for Medical ResearchSydneyAustralia
  3. 3.Discipline of Paediatrics and Child Health, Sydney Medical SchoolUniversity of SydneySydneyAustralia
  4. 4.Embryology UnitThe Children’s Medical Research InstituteWestmeadAustralia
  5. 5.Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical SchoolUniversity of SydneySydneyAustralia

Personalised recommendations