Advertisement

Calcified Tissue International

, Volume 101, Issue 6, pp 553–563 | Cite as

Does Oxidative Stress Play a Role in Altered Characteristics of Diabetic Bone? A Systematic Review

  • Miljana Bacevic
  • Bozidar Brkovic
  • Adelin Albert
  • Eric Rompen
  • Regis P. Radermecker
  • France LambertEmail author
Review

Abstract

Diabetes mellitus (DM) has been associated with increased bone fracture rates, impaired bone regeneration, delayed bone healing, and depressed osteogenesis. However, the plausible pathogenic mechanisms remain incompletely understood. The aim of the present systematic review was to investigate whether oxidative stress (OS) plays a role in altered characteristics of diabetic bone under in vivo conditions. An electronic search of the MEDLINE (via PubMed) and Embase databases was performed. In vivo animal studies involving DM and providing information regarding assessment of OS markers combined with analyses of bone histology/histomorphometry parameters were selected. A descriptive analysis of selected articles was performed. Ten studies were included in the present review. Both bone formation and bone resorption parameters were significantly decreased in the diabetic groups of animals compared to the healthy groups. This finding was consistent regardless of different animal/bone models employed or different evaluation periods. A statistically significant increase in systemic and/or local OS status was also emphasised in the diabetic groups in comparison to the healthy ones. Markers of OS were associated with histological and/or histomorphometric parameters, including decreased trabecular bone and osteoid volumes, suppressed bone formation, defective bone mineralisation, and reduced osteoclastic activity, in diabetic animals. Additionally, insulin and antioxidative treatment proved to be efficient in reversing the deleterious effects of high glucose and associated OS. The present findings support the hypotheses that OS in the diabetic condition contributes at least partially to defective bone features, and that antioxidative supplementation can be a valuable adjunctive strategy in treating diabetic bone disease, accelerating bone healing, and improving osteointegration.

Keywords

Oxidative stress Diabetes mellitus Bone features Antioxidants Review 

Notes

Acknowledgements

The authors are grateful to Prof. Réne Rizzoli, Prof. Olivier Bruyère, and Dr. Véronique Rabenda for their insightful comments and helpful suggestions for improvement of the manuscript.

Author Contributions

MB, BB, and FL designed the study. FL is the guarantor. MB, BB, and FL performed the literature search and collected the data. MB, BB, AA, ER, RR, and FL analysed and interpreted the data. AA is responsible for statistical analysis of the data. MB and FL drafted this manuscript. All authors revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work and ensure that any questions relating to the accuracy and integrity of the study are investigated and properly resolved.

Compliance with Ethical Standards

Conflicts of interest

Miljana Bacevic, Bozidar Brkovic, Adelin Albert, Eric Rompen, Regis P. Radermecker, and France Lambert declare that they have no conflicts of interest. No external funding was available for this study, except for the internal support of the authors’ institution.

Supplementary material

223_2017_327_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb) Appendix I Reason(s) for exclusion
223_2017_327_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 kb) Appendix II The selected studies
223_2017_327_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 19 kb) Appendix III The algorithm used for electronic search in PubMed

References

  1. 1.
    The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20(7):1183–1197CrossRefGoogle Scholar
  2. 2.
    Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82. doi: 10.2337/diaclin.26.2.77 CrossRefGoogle Scholar
  3. 3.
    De Leeuw I, Abs R (1977) Bone mass and bone density in maturity-type diabetics measured by the 125I photon-absorption technique. Diabetes 26(12):1130–1135CrossRefPubMedGoogle Scholar
  4. 4.
    Cozen L (1972) Does diabetes delay fracture healing? Clin Orthop Relat Res 82:134–140CrossRefPubMedGoogle Scholar
  5. 5.
    Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14(6):429–435. doi: 10.1097/MED.0b013e3282f1cba3 CrossRefPubMedGoogle Scholar
  6. 6.
    Goodman WG, Hori MT (1984) Diminished bone formation in experimental diabetes. Relationship to osteoid maturation and mineralization. Diabetes 33(9):825–831CrossRefPubMedGoogle Scholar
  7. 7.
    Follak N, Kloting I, Ganzer D, Merk H (2003) Scanning electron microscopic examinations on retarded bone defect healing in spontaneously diabetic BB/O(ttawa)K(arlsburg) rats. Histol Histopathol 18(1):111–120PubMedGoogle Scholar
  8. 8.
    von Wilmowsky C, Stockmann P, Harsch I, Amann K, Metzler P, Lutz R, Moest T, Neukam FW, Schlegel KA (2011) Diabetes mellitus negatively affects peri-implant bone formation in the diabetic domestic pig. J Clin Periodontol 38(8):771–779. doi: 10.1111/j.1600-051X.2011.01746.x CrossRefGoogle Scholar
  9. 9.
    Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, Leone CW, Morgan EF, Gerstenfeld LC, Einhorn TA, Graves DT (2007) Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res 22(4):560–568. doi: 10.1359/jbmr.070115 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hamada Y, Fujii H, Fukagawa M (2009) Role of oxidative stress in diabetic bone disorder. Bone 45(Suppl 1):S35–S38. doi: 10.1016/j.bone.2009.02.004 CrossRefPubMedGoogle Scholar
  11. 11.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5(2):472–484. doi: 10.3390/biom5020472 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi: 10.1016/j.biocel.2006.07.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31(4):509–519CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J (2011) Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 15(11):2867–2908. doi: 10.1089/ars.2010.3685 CrossRefPubMedGoogle Scholar
  16. 16.
    Grishko VI, Ho R, Wilson GL, Pearsall AW (2009) Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthr Cartil 17(1):107–113. doi: 10.1016/j.joca.2008.05.009 CrossRefPubMedGoogle Scholar
  17. 17.
    Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314(1):197–207CrossRefPubMedGoogle Scholar
  18. 18.
    Bansal S, Siddarth M, Chawla D, Banerjee BD, Madhu SV, Tripathi AK (2012) Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol Cell Biochem 361(1–2):289–296. doi: 10.1007/s11010-011-1114-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Wang X, Yu S, Wang CY, Wang Y, Liu HX, Cui Y, Zhang LD (2015) Advanced glycation end products induce oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In Vitro Cell Dev Biol Anim 51(2):204–209. doi: 10.1007/s11626-014-9823-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15(10):468–477. doi: 10.1016/j.molmed.2009.08.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. doi: 10.1136/bmj.b2700 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. doi: 10.1186/1471-2288-14-43 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Retzepi M, Donos N (2010) The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res 21(7):673–681. doi: 10.1111/j.1600-0501.2010.01923.x CrossRefPubMedGoogle Scholar
  24. 24.
    Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990. doi: 10.1016/j.cellsig.2012.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:5. doi: 10.1186/1475-2840-4-5 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, Ravussin E (1995) Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab 80(4):1194–1202. doi: 10.1210/jcem.80.4.7714089 PubMedGoogle Scholar
  27. 27.
    Colombo JS, Balani D, Sloan AJ, Crean SJ, Okazaki J, Waddington RJ (2011) Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats. Clin Oral Implants Res 22(6):578–586. doi: 10.1111/j.1600-0501.2010.01992.x CrossRefPubMedGoogle Scholar
  28. 28.
    Guan CC, Yan M, Jiang XQ, Zhang P, Zhang XL, Li J, Ye DX, Zhang FQ (2009) Sonic hedgehog alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of bone marrow stromal cells. Bone 45(6):1146–1152. doi: 10.1016/j.bone.2009.08.009 CrossRefPubMedGoogle Scholar
  29. 29.
    Lu H, Kraut D, Gerstenfeld LC, Graves DT (2003) Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology 144(1):346–352. doi: 10.1210/en.2002-220072 CrossRefPubMedGoogle Scholar
  30. 30.
    Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40(2):345–353. doi: 10.1016/j.bone.2006.09.011 CrossRefPubMedGoogle Scholar
  31. 31.
    Suh KS, Rhee SY, Jung WW, Kim NJ, Jang YP, Kim HJ, Kim MK, Choi YK, Kim YS (2013) Chrysanthemum zawadskii extract protects osteoblastic cells from highly reducing sugar-induced oxidative damage. Int J Mol Med 32(1):241–250. doi: 10.3892/ijmm.2013.1371 CrossRefPubMedGoogle Scholar
  32. 32.
    Ma Y, Wang H (2012) PI3 K/Akt/FoxO: a novel participant in signal transduction in bone cells under mechanical stimulation. Cell Biol Int 36(10):923–926. doi: 10.1042/CBI20120078 CrossRefPubMedGoogle Scholar
  33. 33.
    Weinberg E, Maymon T, Moses O, Weinreb M (2014) Streptozotocin-induced diabetes in rats diminishes the size of the osteoprogenitor pool in bone marrow. Diabetes Res Clin Pract 103(1):35–41. doi: 10.1016/j.diabres.2013.11.015 CrossRefPubMedGoogle Scholar
  34. 34.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Investig 85(3):632–639. doi: 10.1172/JCI114485 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fraser JH, Helfrich MH, Wallace HM, Ralston SH (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19(3):223–226CrossRefPubMedGoogle Scholar
  36. 36.
    Fujii H, Hamada Y, Fukagawa M (2008) Bone formation in spontaneously diabetic Torii-newly established model of non-obese type 2 diabetes rats. Bone 42(2):372–379. doi: 10.1016/j.bone.2007.10.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Khan TS, Fraser L-A (2015) Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos 2015:174186. doi: 10.1155/2015/174186 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    McCabe LR (2009) Switching fat from the periphery to bone marrow: why in Type I diabetes? Exp Rev Endocrinol Metab 4(3):203–207CrossRefGoogle Scholar
  39. 39.
    Christopher MJ, Link DC (2008) Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res 23(11):1765–1774. doi: 10.1359/JBMR.080612 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Adil C, Aydin T, Taspinar O, Kiziltan H, Eris AH, Hocaoglu IT, Posul S, Kepekci M, Denizli E, Guler M (2015) Bone mineral density evaluation of patients with type 2 diabetes mellitus. J Phys Ther Sci 27(1):179–182. doi: 10.1589/jpts.27.179 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fajardo RJ, Karim L, Calley VI, Bouxsein ML (2014) A review of rodent models of Type 2 diabetic skeletal fragility. J Bone Miner Res 29(5):1025–1040. doi: 10.1002/jbmr.2210 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gomes PS, Fernandes MH (2011) Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 45(1):14–24. doi: 10.1258/la.2010.010085 CrossRefPubMedGoogle Scholar
  43. 43.
    Kesavulu MM, Giri R, Kameswara Rao B, Apparao C (2000) Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 26(5):387–392PubMedGoogle Scholar
  44. 44.
    Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, Shankar V (2013) Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 5(3):213–219. doi: 10.4103/1947-2714.109193 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bandeira SDM, Guedes GDS, da Fonseca LJS, Pires AS, Gelain DP, Moreira JCF, Rebelo LA, Vasconcelos SML, Goulart MOF (2012) Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev 2012:13. doi: 10.1155/2012/819310 CrossRefGoogle Scholar
  46. 46.
    Shyng YC, Devlin H, Sloan P (2001) The effect of streptozotocin-induced experimental diabetes mellitus on calvarial defect healing and bone turnover in the rat. Int J Oral Maxillofac Surg 30(1):70–74. doi: 10.1054/ijom.2000.0004 CrossRefPubMedGoogle Scholar
  47. 47.
    Giglio MJ, Giannunzio G, Olmedo D, Guglielmotti MB (2000) Histomorphometric study of bone healing around laminar implants in experimental diabetes. Implant Dent 9(2):143–149CrossRefPubMedGoogle Scholar
  48. 48.
    Li X, Ma XY, Feng YF, Ma ZS, Wang J, Ma TC, Qi W, Lei W, Wang L (2015) Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3 K/AKT pathway under diabetic conditions. Biomaterials 36:44–54. doi: 10.1016/j.biomaterials.2014.09.012 CrossRefPubMedGoogle Scholar
  49. 49.
    Koerdt S, Siebers J, Bloch W, Ristow O, Kuebler AC, Reuther T (2014) Role of oxidative and nitrosative stress in autogenous bone grafts to the mandible using guided bone regeneration and a deproteinized bovine bone material. J Cranio Maxillo Fac Surg 42(5):560–567. doi: 10.1016/j.jcms.2013.07.027 CrossRefGoogle Scholar
  50. 50.
    Pradeep AR, Rao NS, Bajaj P, Kumari M (2013) Efficacy of subgingivally delivered simvastatin in the treatment of patients with type 2 diabetes and chronic periodontitis: a randomized double-masked controlled clinical trial. J Periodontol 84(1):24–31. doi: 10.1902/jop.2012.110721 CrossRefPubMedGoogle Scholar
  51. 51.
    Yilmaz MI, Baykal Y, Kilic M, Sonmez A, Bulucu F, Aydin A, Sayal A, Kocar IH (2004) Effects of statins on oxidative stress. Biol Trace Elem Res 98(2):119–127. doi: 10.1385/BTER:98:2:119 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Miljana Bacevic
    • 1
    • 2
  • Bozidar Brkovic
    • 2
  • Adelin Albert
    • 3
  • Eric Rompen
    • 4
  • Regis P. Radermecker
    • 5
  • France Lambert
    • 4
    • 1
    • 6
    Email author
  1. 1.Dental Biomaterials Research Unit (d-BRU), Faculty of MedicineUniversity of LiegeLiègeBelgium
  2. 2.Clinic of Oral Surgery, School of Dental MedicineUniversity of BelgradeBelgradeSerbia
  3. 3.Department of BiostatisticsUniversity Hospital of LiegeLiègeBelgium
  4. 4.Department of Periodontology and Oral Surgery, Faculty of MedicineUniversity of LiegeLiègeBelgium
  5. 5.Department of Diabetes, Nutrition and Metabolic DisordersUniversity Hospital of LiegeLiègeBelgium
  6. 6.Service de Médecine DentaireLiègeBelgium

Personalised recommendations