Calcified Tissue International

, Volume 101, Issue 5, pp 519–529 | Cite as

Impact of Chiropractic Manipulation on Bone and Skeletal Muscle of Ovariectomized Rats

  • A. López-Herradón
  • R. Fujikawa
  • M. Gómez-Marín
  • J. P. Stedile-Lovatel
  • F. Mulero
  • J. A. Ardura
  • P. Ruiz
  • I. Muñoz
  • P. Esbrit
  • I. Mahíllo-Fernández
  • A. Ortega-de MuesEmail author
Original Research


Evidence suggests that chiropractic manipulation might exert positive effects in osteoporotic patients. The aim of this study was to evaluate the effects of chiropractic manipulation on bone structure and skeletal muscle in rats with bone loss caused by ovariectomy (OVX). The 6-month old Sprague-Dawley rats at 10 weeks following OVX or sham operation (Sh) did not suffer chiropractic manipulation (NM group) or were submitted to true chiropractic manipulation using the chiropractic adjusting instrument Activator V® three times/week for 6 weeks as follows: Force 1 setting was applied onto the tibial tubercle of the rat right hind limb (TM group), whereas the corresponding left hind limb received a false manipulation (FM group) consisting of ActivatorV® firing in the air and slightly touching the tibial tubercle. Bone mineral density (BMD) and bone mineral content (BMC) were determined in long bones and L3–L4 vertebrae in all rats. Femora and tibia were analyzed by μCT. Mechano growth factor (MGF) was detected in long bones and soleus, quadriceps and tibial muscles by immunohistochemistry and Western blot. The decrease of BMD and BMC as well as trabecular bone impairment in the long bones of OVX rats vs Sh controls was partially reversed in the TM group versus FM or NM rats. This bone improvement by chiropractic manipulation was associated with an increased MGF expression in the quadriceps and the anterior tibial muscle in OVX rats. These findings support the notion that chiropractic manipulation can ameliorate osteoporotic bone at least partly by targeting skeletal muscle.


Chiropractic manipulation Mechano growth factor (MGF) Osteoporotic bone Skeletal muscle 



This work was supported in part by grants from the Spanish Chiropractic Association (AEQ) and Fondation de Recherche Chiropratique du Québec (Québec, Canada).

Compliance with Ethical Standards

Conflict of interest

A. López-Herradón, R. Fujikawa, M. Gómez-Marín, J. P. Stedile-Lovatel, F. Mulero, J. A. Ardura, P. Ruiz, I. Muñoz, P. Esbrit, I. Mahíllo-Fernández and A.Ortega-de Mues declare that they do not have conflict of interest.

Ethical Approval

All animal procedures were carried out according to the guidelines of European Union directives (2010/63/EU). All experimental protocols were approved by the Institutional Animal Care and Use Committee at Fundación Jiménez Díaz.


  1. 1.
    González JM (2000) Osteoporosis. In: Rozman C, Farreras PV (eds) Principios de medicina interna, vol 1, 14th edn. Editorial Harcourt, Madrid, pp 1233–1242Google Scholar
  2. 2.
    Krane SM, Michael FH (1998) Metabolic bone diseases. In: Harrison J (ed) Principles of internal medicine, vol 2, 14th edn. Mc Graw-Hill-Interamericana, New York, pp 2557–2563Google Scholar
  3. 3.
    Kemmler W, von Stengel S, Bebenek M, Engelke K, Hentschke C, Kalender WA (2012) Exercise and fractures in postmenopausal women: 12-year results of the Erlangen fitness and osteoporosis prevention study (EFOPS). Osteoporos Int. 23:1267–1276CrossRefPubMedGoogle Scholar
  4. 4.
    Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407CrossRefPubMedGoogle Scholar
  5. 5.
    Burger EH, Klein-Nulend J (1999) Mechano transduction in bone-role of the lacuno-canalicular network. FASEB J 13:S101–S112PubMedGoogle Scholar
  6. 6.
    Pedersen BK (2011) Muscles and their myokines. J ExpBiol 214:337–346Google Scholar
  7. 7.
    Jähn K, Lara-Castillo N, Brotto L, Mo CL, Johnson ML, Brotto M, Bonewald LF (2012) Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of B-catenin. Eur Cell Mater 24:197–210CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matheny RW Jr, Nindl BC, Adamo ML (2010) Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151:865–875CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Goldspink G (2005) Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda) 20:232–238CrossRefGoogle Scholar
  10. 10.
    Kravchenko IV, Furalyov VA, Lisitsina ES, Popov VO (2011) Stimulation of mechano-growth factor expression by second messengers. Arch Biochem Biophys 507:323–331CrossRefPubMedGoogle Scholar
  11. 11.
    Tang LL, Xian CY, Wang YL (2006) The MGF expression of osteoblasts in response to mechanical overload. Arch Oral Biol 51:1080–1085CrossRefPubMedGoogle Scholar
  12. 12.
    Juffer P, Jaspers RT, Lips P, Bakker AD, Klein-Nulend J (2012) Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab 302:E389–E395CrossRefPubMedGoogle Scholar
  13. 13.
    Deng M, Zhang B, Wang K, Liu F, Xiao H, Zhao J, Liu P, Li Y, Lin F, Wang Y (2010) Mechano growth factor E peptide promotes osteoblast proliferation and bone-defect healing in rabbits. Int Orthop 35:1099–1106CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xin C, Bingbing Z, Yuanliang W, Chengyu X, Li Y, Moyuan D, Qin P, Yuxiao L (2012) Mechano-growth factor E peptide inhibits the differentation and mineralization of osteoblasts. ArchOralBiol 57:720–727Google Scholar
  15. 15.
    Kaji H (2014) Interaction between muscle and bone. J Bone Metab 21:29–40CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chapman-Smith D (2004) Quiropráctica. Talleres Gráficos Edelvives, ZaragozaGoogle Scholar
  17. 17.
    Fuhr AW (2009) The activator methods, 2nd edn. Mosby, Maryland HeightsGoogle Scholar
  18. 18.
    Pickar J (2002) Neurophysiological effects of spinal manipulation. Spine J 2:357–371CrossRefPubMedGoogle Scholar
  19. 19.
    Johnson IP (2008) Hypothesis: upregulation of a muscle-specific isoform of insulin-like growth factor-1 (IGF-1) by spinal manipulation. Med Hypotheses 71:715–721CrossRefPubMedGoogle Scholar
  20. 20.
    Bonewald LF, Kiel DP, Clemens TL, Esser K, Orwoll ES, O’Keefe RJ, Fielding RA (2013) Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res 28:1857–1865CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen and Co. Ltd, LondonGoogle Scholar
  22. 22.
    Trierweiler J, Gottert DN, Gehlen G (2012) Evaluation of mechanical allodynia in an animal immobilization model using the von Frey method. J Manip Physiol Ther 35:18–25CrossRefGoogle Scholar
  23. 23.
    Portal-Núñez S, Lozano D, de Castro LF, de Gortázar AR, Nogués X, Esbrit P (2010) Alterations of the Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice. FEBS Lett 584:3095–3100CrossRefPubMedGoogle Scholar
  24. 24.
    Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kennedy Oran D, Brennan Orlaith, Rackard Susan M, O’Brien Fergal J, Taylor David, Clive Lee T (2009) Variation of trabecular microarchitectural parameters in cranial, caudal and mid-vertebral regions of the ovine L3 vertebra. J Anat 214:729–735CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486CrossRefPubMedGoogle Scholar
  27. 27.
    Woodhouse D (2003) Post-traumatic compression fracture. Clin Chiropr 6:67–72CrossRefGoogle Scholar
  28. 28.
    Stock JL, Amantea JH, Overdorf AD, Samar AD, Pickens FL (1997) The role of chiropractic in the diagnosis, prevention, and treatment of osteoporosis. Complement Ther Med 5:36–39CrossRefGoogle Scholar
  29. 29.
    Hawk C, Schneider M, Dougherty P, Gleberzon BJ, Killinger LZ (2010) Best practices recommendations for chiropractic care for older adults: results of a consensus process. J Manip Physiol Ther 33:464–473CrossRefGoogle Scholar
  30. 30.
    Liebschner MA, Chun K, Kim N, Ehni B (2014) In vitro biochemical evaluation of single impulse and repetitive mechanical shock wave devices utilized for spinal manipulative therapy. Ann Biomed Eng 42:2524–2536CrossRefPubMedGoogle Scholar
  31. 31.
    Colloca CJ, Keller TS, Black P, Normand MC, Harrison DE, Harrison DD (2005) Comparison of mechanical force of manually assisted chiropractic adjusting instruments. J Manip Physiol Ther 28:414–422CrossRefGoogle Scholar
  32. 32.
    Smith DB, Fuhr AW, Davis BP (1989) Skin accelerometer displacement and relative bone movement of adjacent vertebrae in response to chiropractic percussion thrusts. J Manip Physiol Ther 12:26–37Google Scholar
  33. 33.
    Fuhr AW, Smith DB (1986) Accuracy of piezoelectric accelerometers measuring displacement of a spinal adjusting instrument. J Manip Physiol Ther 9:15–21Google Scholar
  34. 34.
    Brown JW, Le NMP (2011) The effect of thermopreference on circadian thermoregulation in sprague-dawley and fisher 344 rats. J Therm Biol 37:309–315CrossRefGoogle Scholar
  35. 35.
    Iwaniec UT, Philbrick KA, Wong CP, Gordon JL, Kahler-Quesada AM, Olson DA, Branscum AJ, Sargent JL, DeMambro VE, Rosen CJ, Turner RT (2016) Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss. Osteoporos Int 27:3091–3101CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wronski TJ, Dann LM, Horner SL (1990) Time course of vertebral osteopenia inovariectomized rats. Bone 10:295–301CrossRefGoogle Scholar
  37. 37.
    Turner RT, Vandersteenhoven JJ, Bell NH (1989) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122CrossRefGoogle Scholar
  38. 38.
    Kalu DN (1991) The ovarectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191CrossRefPubMedGoogle Scholar
  39. 39.
    Ahtiainen M, Pöllänen E, Ronkainen PH, Alen M, Puolakka J, Kaprio J, Sipilä S, Kovanen V (2012) Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. Age (Dordr) 34:1249–1260CrossRefGoogle Scholar
  40. 40.
    Adams GR (1998) Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading. Exerc Sport Sci Rev 26:31–60CrossRefPubMedGoogle Scholar
  41. 41.
    Wang LC, Kernell D (2001) Quantification of fibre type regionalisation: an analysis of lower hindlimb muscles in the rat. J Anat 198:295–308CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Punkt K, Naupert A, Asmussen G (2004) Differentiation of rat skeletal muscle fibres during development and ageing. Acta Histochem 106:145–154CrossRefPubMedGoogle Scholar
  43. 43.
    Jaspers RT, Bravenboer N (2014) Biochemical interaction between muscle and bone: a physiological reality? Clinic Rev Bone Miner Metab 12:27–43CrossRefGoogle Scholar
  44. 44.
    Wang L, Ma R, Guo Y, Sun J, Liu H, Zhu R, Liu C, Li J, Li L, Chen B, Sun L, Tang J, Zhao D, Mo F, Niu J, Jiang G, Fu M, Brömme D, Zhang D, Gao S (2017) Antioxidant effect of fructus ligustri lucidi aqueous extract in ovariectomized rats is mediated through Nox4-ROS-NF-κB pathway. Front Pharmacol 8:266–279CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hamrick MW, McNeil PL, Patterson SL (2010) Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact 10:64–70PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • A. López-Herradón
    • 1
    • 2
  • R. Fujikawa
    • 1
  • M. Gómez-Marín
    • 1
  • J. P. Stedile-Lovatel
    • 1
  • F. Mulero
    • 3
  • J. A. Ardura
    • 2
  • P. Ruiz
    • 1
  • I. Muñoz
    • 1
  • P. Esbrit
    • 2
  • I. Mahíllo-Fernández
    • 4
  • A. Ortega-de Mues
    • 1
    Email author
  1. 1.Madrid College of ChiropracticReal Centro Universitario Escorial-María CristinaMadridSpain
  2. 2.Laboratorio de Metabolismo Mineral y ÓseoInstituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz-UAMMadridSpain
  3. 3.Unidad de Imagen MolecularCentro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain
  4. 4.Unidad de Epidemiología y BioestadísticaIIS-Fundación Jiménez Díaz-UAMMadridSpain

Personalised recommendations