Calcified Tissue International

, Volume 101, Issue 1, pp 34–42 | Cite as

Reduced Bone Material Strength is Associated with Increased Risk and Severity of Osteoporotic Fractures. An Impact Microindentation Study

  • Daysi Duarte Sosa
  • Erik Fink Eriksen
Original Research


The aim of the study was to test, whether bone material strength differs between different subtypes of osteoporotic fracture and assess whether it relates to vertebral fracture severity. Cortical bone material strength index (BMSi) was measured by impact microindentation in 66 women with osteoporotic fracture and 66 age- and sex-matched controls without fracture. Bone mineral density (BMD) and bone turnover markers were also assessed. Vertebral fracture severity was graded by semiquantitative (SQ) grading. Receiver operator characteristic (ROC) curves were used to examine the ability of BMSi to discriminate fractures. Subjects with osteoporotic fractures exhibited lower BMSi than controls (71.5 ± 7.3 vs. 76.4 ± 6.2, p < 0.001). After adjusting for age and hip BMD, a significant negative correlation was seen between BMSi and vertebral fracture severity (r 2 = 0.19, p = 0.007). A decrease of one standard deviation (SD) in BMSi was associated with increased risk of fracture (OR 2.62; 95% CI 1.35, 5.10, p = 0.004). ROC curve areas under the curve (AUC) for BMSi in subjects with vertebral fracture (VF), hip fracture (HF), and non-vertebral non-hip fracture (NVNHFx), (mean; 95% CI) were 0.711 (0.608; 0.813), 0.712 (0.576; 0.843), 0.689 (0.576; 0.775), respectively. Combining BMSi and BMD provided further improvement in the discrimination of fractures with AUC values of 0.777 (0.695; 0.858), 0.789 (0.697; 0.882), and 0.821 (0.727; 0.914) for VFx, HFx, and NVNHFx, respectively. Low BMSi of the tibial cortex is associated with increased risk of all osteoporotic fractures and severity of vertebral fractures.


Bone quality Bone material strength Impact microindentation Vertebral fracture severity Fracture risk 



We would like to thank the assistance from the staff at the Geriatrics Division of the Department of Medicine at the University Hospital, Oslo.

Author Contributions

D. Duarte Sosa and EF Eriksen contributed to the experimental work and/or data collection. D. Duarte Sosa analyzed the data. All authors drafted and revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work.

Compliance with Ethical Standards

Conflict of interest

The authors Daysi Duarte Sosa and Erik Fink Eriksen declare that they have no conflict of interest.

Research involving Human and Animal Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

223_2017_256_MOESM1_ESM.eps (107 kb)
Supplementary material 1 (EPS 107 KB)
223_2017_256_MOESM2_ESM.pdf (30 kb)
Supplementary material 2 (PDF 29 KB)
223_2017_256_MOESM3_ESM.eps (160 kb)
Supplementary material 3 (EPS 160 KB)
223_2017_256_MOESM4_ESM.pdf (30 kb)
Supplementary material 4 (PDF 30 KB)
223_2017_256_MOESM5_ESM.eps (136 kb)
Supplementary material 5 (EPS 135 KB)
223_2017_256_MOESM6_ESM.eps (104 kb)
Supplementary material 6 (EPS 104 KB)
223_2017_256_MOESM7_ESM.docx (13 kb)
Supplementary material 7 (DOCX 13 KB)
223_2017_256_MOESM8_ESM.pdf (31 kb)
Supplementary material 8 (PDF 31 KB)
223_2017_256_MOESM9_ESM.pdf (30 kb)
Supplementary material 9 (PDF 30 KB)
223_2017_256_MOESM10_ESM.pdf (95 kb)
Supplementary material 10 (PDF 95 KB)
223_2017_256_MOESM11_ESM.pdf (31 kb)
Supplementary material 11 (PDF 31 KB)


  1. 1.
    Melton L, Chrischilles EA, Cooper C, Lane AW, Riggs BL (2005) How many women have osteoporosis? J Bone Miner Res 20(5):886–892CrossRefPubMedGoogle Scholar
  2. 2.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515CrossRefPubMedGoogle Scholar
  3. 3.
    Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, Kokolus SL, McMahon DJ, Lappe JM, Recker RR (2010) Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res 25(10):2229–2238CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Keaveny TM (2010) Biomechanical computed tomography—noninvasive bone strength analysis using clinical computed tomography scans. Ann NY Acad Sci 1192(1):57–65CrossRefPubMedGoogle Scholar
  5. 5.
    Eriksen EF (2014) Commentary on sclerostin deficiency is linked to altered bone composition. J Bone Miner Res 29(10):2141–2143CrossRefPubMedGoogle Scholar
  6. 6.
    Paschalis EP, Mendelsohn R, Boskey AL (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469(8):2170–2178CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21(2):195214CrossRefGoogle Scholar
  8. 8.
    Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336CrossRefPubMedGoogle Scholar
  9. 9.
    Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16CrossRefPubMedGoogle Scholar
  10. 10.
    Bridges D, Randall C, Hansma PK (2012) A new device for performing reference point indentation without a reference probe. Rev Sci Instrum 83(4):044301CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Diez Perez A, Bouxsein, ML, Eriksen EF, Khosla S, Nyman JS, Papapoulos S, Tang SY (2016) Technical note: Recommendations for standard procedure to asses cortical bone at the tissue-level in vivo using impact microindentation. Bone Rep 5:181–185CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fantner GE, Rabinovych O, Schitter G, Thurner P, Kindt JH, Finch MM, Weaver JC, Golde LS, Morse DE, Lipman EA (2006) Hierarchical interconnections in the nano-composite material bone: fibrillar cross-links resist fracture on several length scales. Compos Sci Technol 66(9):1205–1211CrossRefGoogle Scholar
  13. 13.
    Nyman JS, Makowski AJ (2012) The contribution of the extracellular matrix to the fracture resistance of bone. Curr Osteoporos Rep 10(3):169–177CrossRefPubMedGoogle Scholar
  14. 14.
    Diez-Perez A, Güerri R, Nogues X, Cáceres E, Pena MJ, Mellibovsky L, Randall C, Bridges D, Weaver JC, Proctor A (2010) Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 25(8):1877–1885CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gallant MA, Brown DM, Organ JM, Allen MR, Burr DB (2013) Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing. Bone 53(1):301–305CrossRefPubMedGoogle Scholar
  16. 16.
    Granke M, Coulmier A, Uppuganti S, Gaddy JA, Does MD, Nyman JS (2014) Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior. J Mech Behav Biomed Mater 37:174–185CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS (2015) Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res 30:1290–1300. doi: 10.1002/jbmr.2452 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Carriero A, Bruse JL, Oldknow KJ, Millán JL, Farquharson C, Shefelbine SJ (2014) Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness. Bone.69:174–179. doi: 10.1016/j.bone.2014.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McNerny EM, Organ JM, Wallace JM, Newman CL, Brown DM, Allen MR (2016) Assessing the inter- and intra-animal variability of in vivo OsteoProbe skeletal measures in untreated dogs. Bone Rep 5:192–198CrossRefPubMedGoogle Scholar
  20. 20.
    Güerri-Fernández RC, Nogués X, Quesada Gómez JM, Torres del Pliego E, Puig L, García-Giralt N, Yoskovitz G, Mellibovsky L, Hansma PK, Díez-Pérez A (2013) Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls. J Bone Miner Res 28(1):162–168CrossRefPubMedGoogle Scholar
  21. 21.
    Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29(4):787–795CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Malgo F, Hamdy NA, Papapoulos SE, Appelman-Dijkstra NM (2015) Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J Clin Endocrinol Metab 100(5):2039–2045CrossRefPubMedGoogle Scholar
  23. 23.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148CrossRefPubMedGoogle Scholar
  24. 24.
    Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90(8):4644–4649CrossRefPubMedGoogle Scholar
  25. 25.
    Sroga GE, Vashishth D (2012) Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep 10(2):141–150CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tang S, Allen MR, Phipps R, Burr DB, Vashishth D (2009) Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int 2(6):887–894CrossRefGoogle Scholar
  27. 27.
    Delmas P, Genant H, Crans G, Stock J, Wong M, Siris E, Adachi J (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33(4):522–532CrossRefPubMedGoogle Scholar
  28. 28.
    Ritzel H, Amling M, Pösl M, Hahn M, Delling G (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12(1):89–95CrossRefPubMedGoogle Scholar
  29. 29.
    Forwood MR, Vashishth D (2009) Translational aspects of bone quality–vertebral fractures, cortical shell, microdamage and glycation: a tribute to Pierre D. Delmas. Osteoporos Int 20(Suppl 3):S247–S253CrossRefPubMedGoogle Scholar
  30. 30.
    , Rudäng, R, Zoulakis M, Sundh D, Brisby H, Diez-Perez A, Johansson L, Mellström D, Darelid A, and Lorentzon M (2015) Bone material strength is associated with areal BMD but not with prevalent fractures in older women. Osteoporos Int.:1–8.Google Scholar
  31. 31.
    Abraham AC, Agarwalla A, Yadavalli A, McAndrew C, Liu JY, Tang SY (2015) Multiscale predictors of femoral neck in situ strength in aging women: contributions of BMD, cortical porosity, reference point indentation, and nonenzymatic glycation. J Bone Miner Res. doi: 10.1002/jbmr.2568 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hansma P, Turner P, Drake b, Yurtsev E, Proctor A, Mathews A, Lelujian J, Randall C, Adams J, Jungmann R (2008) The bone diagnostic instrument II: indentation distance increase. Rev Sci Instrum 79(6):064303CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dall’Ara E, Schmidt R, Zysset P (2012) Microindentation can discriminate between damage and intact human bone tissue. Bone 50(4):925–929CrossRefPubMedGoogle Scholar
  34. 34.
    Donaldson MG, Palermo L, Schousboe JT, Ensrud KE, Hochberg MC, Cummings SR (2009) FRAX and risk of vertebral fractures: the fracture intervention trial. J Bone Miner Res 24(11):1793–1799CrossRefPubMedGoogle Scholar
  35. 35.
    Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23(12):1892–1904CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Azagra R, Roca G, Encabo G, Aguyé A, Zwart M, Güell S, Puchol N, Gene E, Casado E, Sancho P et al (2012) FRAX® tool, the WHO algorithm to predict osteoporotic fractures: the first analysis of its discriminative and predictive ability in the Spanish FRIDEX cohort. BMC Musculoskelet Disord 13(1):204CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ettinger B, Liu H, Blackwell T, Hoffman AR, Ensrud KE, Orwoll ES, Group OFiMR (2012) Validation of FRC, a fracture risk assessment tool, in a cohort of older men: the Osteoporotic Fractures in Men (MrOS) study. J Clin Densitom 15(3):334–342CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 5(8):1526–1536CrossRefGoogle Scholar
  39. 39.
    Shigdel R, Osima M, Ahmed LA, Joakimsen RM, Eriksen EF, Zebaze R, Bjørnerem à (2015) Bone turnover markers are associated with higher cortical porosity, thinner cortices, and larger size of the proximal femur and non-vertebral fractures. Bone 81:1–6CrossRefPubMedGoogle Scholar
  40. 40.
    Hannon R, Eastell R (2000) Preanalytical variability of biochemical markers of bone turnover. Osteoporosis Int 11(18):30–S44CrossRefGoogle Scholar
  41. 41.
    Ivaska KK, Gerdhem P, Åkesson K, Garnero P, Obrant KJ (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22(8):1155–1164CrossRefPubMedGoogle Scholar
  42. 42.
    Yu-Yahiro JA, Michael RH, Dubin NH, Fox KM, Sachs M, Hawkes WG, Hebel JR, Zimmerman SI, Shapiro J, Magaziner J (2001) Serum and urine markers of bone metabolism during the year after hip fracture. Am Geriatric Soc 49(7):877–878CrossRefGoogle Scholar
  43. 43.
    Veitch S, Findlay S, Hamer A, Blumsohn A, Eastell R, Ingle B (2006) Changes in bone mass and bone turnover following tibial shaft fracture. Osteoporos Int 17(3):364–372CrossRefPubMedGoogle Scholar
  44. 44.
    Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ (2010) Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int 86(6):470–483CrossRefPubMedGoogle Scholar
  45. 45.
    Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population based HR-pQCT study. J Bone Miner Res 26(1):50–62CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Clinical Endocrinology, Morbid Obesity and Preventive MedicineOslo University Hospital, Institute of Clinical Medicine, Oslo UniversityOsloNorway

Personalised recommendations