Calcified Tissue International

, Volume 100, Issue 4, pp 420–430 | Cite as

Electrical Stimulation of Denervated Rat Skeletal Muscle Ameliorates Bone Fragility and Muscle Loss in Early-Stage Disuse Musculoskeletal Atrophy

  • Hiroyuki TamakiEmail author
  • Kengo Yotani
  • Futoshi Ogita
  • Keishi Hayao
  • Kouki Nakagawa
  • Kazuhiro Sugawara
  • Hikari Kirimoto
  • Hideaki Onishi
  • Norikatsu Kasuga
  • Noriaki Yamamoto
Original Research


We tested whether daily muscle electrical stimulation (ES) can ameliorate the decrease in cortical bone strength as well as muscle and bone geometric and material properties in the early stages of disuse musculoskeletal atrophy. 7-week-old male F344 rats were randomly divided into three groups: age-matched control group (Cont); a sciatic denervation group (DN); and a DN + direct electrical stimulation group (DN + ES). Denervated tibialis anterior (TA) muscle in the DN + ES group received ES with 16 mA at 10 Hz for 30 min/day, 6 days/week. Micro CT, the three-point bending test, and immunohistochemistry were used to characterize cortical bone mechanical, structural, and material properties of tibiae. TA muscle in the DN + ES group showed significant improvement in muscle mass and myofiber cross-sectional area relative to the DN group. Maximal load and stiffness of tibiae, bone mineral density estimated by micro CT, and immunoreactivity of DMP1 in the cortical bone tissue were also significantly greater in the DN + ES group than in the DN group. These results suggest that daily ES-induced muscle contraction treatment reduced the decrease in muscle mass and cortical bone strength in early-stage disuse musculoskeletal atrophy and is associated with a beneficial effect on material properties such as mineralization of cortical bone tissue.


Electrical stimulation Muscle contraction Denervation Bone strength Dentin matrix protein 



This study was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI Grant Nos. 25350829, 25282163, 16K13021), and by a Grant-in-Aid for Developed Research from the Niigata University of Health and Welfare. The authors are grateful to the Niigata Bone Science Institute for technical support.

Author Contributions

Author HT designed the study and prepared the first draft of the paper; Authors HT, KY, FO, KN, and NK performed experiments; Authors HT, KS, and HK analyzed data; Authors HT, HO, and NY interpreted results of experiments; Authors HT and HK prepared figures; Authors HT, HO, and NK edited and revised manuscript; All authors approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of interest

Hiroyuki Tamaki, Kengo Yotani, Futoshi Ogita, Keishi Hayao, Kouki Nakagawa, Kazuhiro Sugawara, Hikari Kirimoto, Hideaki Onishi, Norikatsu Kasuga, and Noriaki Yamamoto declare no conflict of interest.

Human and Animal Rights and Informed Consent

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. 1.
    Tamaki H, Yotani K, Ogita F, Kirimoto H, Onishi H, Kasuga N (2016) Bone loss due to disuse and electrical muscle stimulation. J Phys Fitness Sports Med 5:267–273CrossRefGoogle Scholar
  2. 2.
    Tamaki H, Yotani K, Ogita F, Takahashi H, Kirimoto H, Onishi H, Yamamoto N (2013) Changes over time in structural plasticity of trabecular bone in rat tibiae immobilized by reversible sciatic denervation. J Musculoskelet Neuronal Interact 13:251–258Google Scholar
  3. 3.
    Basso N, Bellows CG, Heersche JN (2005) Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 36:173–183CrossRefPubMedGoogle Scholar
  4. 4.
    Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36(Suppl 1):S19–S24CrossRefPubMedGoogle Scholar
  5. 5.
    Iwamoto J, Yeh JK, Aloia JF (1999) Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone 24:163–169CrossRefPubMedGoogle Scholar
  6. 6.
    Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM (2016) The periosteal bone surface is less mechano-responsive than the endocortical. Sci Rep 6:23480CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9:1065–1075CrossRefPubMedGoogle Scholar
  8. 8.
    Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615CrossRefPubMedGoogle Scholar
  9. 9.
    Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137PubMedGoogle Scholar
  10. 10.
    Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ (2014) Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr) 36:545–547CrossRefGoogle Scholar
  11. 11.
    Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M (1997) Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 61:22–25CrossRefPubMedGoogle Scholar
  12. 12.
    Kern H, Salmons S, Mayr W, Rossini K, Carraro U (2005) Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve 31:98–101CrossRefPubMedGoogle Scholar
  13. 13.
    Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW (2012) Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One 7:e30348CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Willand MP, Holmes M, Bain JR, Fahnestock M, De Bruin H (2013) Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle Nerve 48:219–225CrossRefPubMedGoogle Scholar
  15. 15.
    Dow DE, Cederna PS, Hassett CA, Dennis RG, Faulkner JA (2007) Electrical stimulation prior to delayed reinnervation does not enhance recovery in muscles of rats. Restor Neurol Neurosci 25:601–610PubMedGoogle Scholar
  16. 16.
    Gigo-Benato D, Russo TL, Geuna S, Domingues NR, Salvini TF, Parizotto NA (2010) Electrical stimulation impairs early functional recovery and accentuates skeletal muscle atrophy after sciatic nerve crush injury in rats. Muscle Nerve 41:685–693CrossRefPubMedGoogle Scholar
  17. 17.
    Dupont Salter AC, Richmond FJ, Loeb GE (2003) Effects of muscle immobilization at different lengths on tetrodotoxin-induced disuse atrophy. IEEE Trans Neural Syst Rehabil Eng 11:209–217CrossRefPubMedGoogle Scholar
  18. 18.
    Fujita N, Murakami S, Arakawa T, Miki A, Fujino H (2011) The combined effect of electrical stimulation and resistance isometric contraction on muscle atrophy in rat tibialis anterior muscle. Bosn J Basic Med Sci 11:74–79PubMedPubMedCentralGoogle Scholar
  19. 19.
    Tomori K, Ohta Y, Nishizawa T, Tamaki H, Takekura H (2010) Low-intensity electrical stimulation ameliorates disruption of transverse tubules and neuromuscular junctional architecture in denervated rat skeletal muscle fibers. J Muscle Res Cell Motil 31:195–205CrossRefPubMedGoogle Scholar
  20. 20.
    Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9CrossRefPubMedGoogle Scholar
  21. 21.
    Umemura Y (2016) Optimal exercise protocol for osteogenic response. J Phys Fitness Sports Med 5:7–12CrossRefGoogle Scholar
  22. 22.
    Lam H, Qin YX (2008) The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone 43:1093–1100CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tamaki H, Tomori K, Yotani K, Ogita F, Sugawara K, Kirimoto H, Onishi H, Yamamoto N, Kasuga N (2014) Electrical stimulation of denervated rat skeletal muscle retards trabecular bone loss in early stages of disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact 14:220–228PubMedGoogle Scholar
  24. 24.
    Tamaki H, Yotani K, Ogita F, Sugawara K, Kirimoto H, Onishi H, Kasuga N, Yamamoto N (2015) Effect of electrical stimulation-induced muscle force and streptomycin treatment on muscle and trabecular bone mass in early-stage disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact 15:270–278PubMedGoogle Scholar
  25. 25.
    Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229CrossRefPubMedGoogle Scholar
  26. 26.
    Qin YX, Lam H, Ferreri S, Rubin C (2010) Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact 10:12–24PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sun X, Liang J, Wang C, Cao S, Hu Y, Xu X (2015) Transient effect of 17 beta-estradiol on osteoporosis in ovariectomized rats accompanied with unilateral disuse in the early phase. Int J Med Sci 12:423–431CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026CrossRefPubMedGoogle Scholar
  29. 29.
    Ling Y, Rios HF, Myers ER, Lu Y, Feng JQ, Boskey AL (2005) DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J Bone Miner Res 20:2169–2177CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, Pavlin D (2003) Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo. J Bone Miner Res 18:807–817CrossRefPubMedGoogle Scholar
  31. 31.
    Ferretti JL, Cointry GR, Capozza RF, Capiglioni R, Chiappe MA (2001) Analysis of biomechanical effects on bone and on the muscle-bone interactions in small animal models. J Musculoskelet Neuronal Interact 1:263–274PubMedGoogle Scholar
  32. 32.
    Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1997) Relationship of spinal fracture to bone density, textural, and anthropometric parameters. Calcif Tissue Int 60:240–244CrossRefPubMedGoogle Scholar
  33. 33.
    Jensen KS, Mosekilde L, Mosekilde L (1990) A model of vertebral trabecular bone architecture and its mechanical properties. Bone 11:417–423CrossRefPubMedGoogle Scholar
  34. 34.
    Umemura Y, Nagasawa S, Honda A, Singh R (2008) High-impact exercise frequency per week or day for osteogenic response in rats. J Bone Miner Metab 26:456–460CrossRefPubMedGoogle Scholar
  35. 35.
    Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95CrossRefPubMedGoogle Scholar
  36. 36.
    Takekura H, Tamaki H, Nishizawa T, Kasuga N (2003) Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres. J Muscle Res Cell Motil 24:439–451CrossRefPubMedGoogle Scholar
  37. 37.
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486CrossRefPubMedGoogle Scholar
  38. 38.
    Iwamoto J, Takeda T, Katsumata T, Tanaka T, Ichimura S, Toyama Y (2002) Effect of etidronate on bone in orchidectomized and sciatic neurectomized adult rats. Bone 30:360–367CrossRefPubMedGoogle Scholar
  39. 39.
    Brouwers JE, van Rietbergen B, Huiskes R, Ito K (2009) Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int 20:1823–1835CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hsu JT, Wang SP, Huang HL, Chen YJ, Wu J, Tsai MT (2013) The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT. J Biomech 46:2611–2618CrossRefPubMedGoogle Scholar
  41. 41.
    Rios HF, Ye L, Dusevich V, Eick D, Bonewald LF, Feng JQ (2005) DMP1 is essential for osteocyte formation and function. J Musculoskelet Neuronal Interact 5:325–327PubMedGoogle Scholar
  42. 42.
    Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CG, Cheng Z, Li A, Chang W, Bikle DD (2015) Osteoblast-specific loss of IGF1R signaling results in impaired endochondral bone formation during fracture healing. J Bone Miner Res 30:1572–1584CrossRefPubMedGoogle Scholar
  43. 43.
    Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste-Marie LG, Kendler DL, Tenenhouse A, Brown JP (2006) Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 36:22–31CrossRefPubMedGoogle Scholar
  44. 44.
    Mabilleau G, Mieczkowska A, Irwin N, Flatt PR, Chappard D (2013) Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219:59–68CrossRefPubMedGoogle Scholar
  45. 45.
    Iwasaki Y, Kazama JJ, Yamato H, Matsugaki A, Nakano T, Fukagawa M (2015) Altered material properties are responsible for bone fragility in rats with chronic kidney injury. Bone 81:247–254CrossRefPubMedGoogle Scholar
  46. 46.
    Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18CrossRefPubMedGoogle Scholar
  47. 47.
    Gajjeraman S, Narayanan K, Hao J, Qin C, George A (2007) Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem 282:1193–1204CrossRefPubMedGoogle Scholar
  48. 48.
    Turner CH (2007) Dentin matrix protein 1 (DMP1). J Musculoskelet Neuronal Interact 7:306–307PubMedGoogle Scholar
  49. 49.
    Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE (2005) Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280:20680–20690CrossRefPubMedGoogle Scholar
  50. 50.
    Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30:807–809CrossRefPubMedGoogle Scholar
  51. 51.
    Favus MJ, American Society for Bone and Mineral Research. (1999) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  52. 52.
    Goodyear SR, Gibson IR, Skakle JM, Wells RP, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 44:899–907CrossRefPubMedGoogle Scholar
  53. 53.
    Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27:1784–1793CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Elkasrawy MN, Hamrick MW (2010) Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact 10:56–63PubMedPubMedCentralGoogle Scholar
  55. 55.
    Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110:771–781CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liang H, Pun S, Wronski TJ (1999) Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology 140:5780–5788Google Scholar
  57. 57.
    Turner CH, Takano Y, Owan I (1995) Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 10:1544–1549CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hiroyuki Tamaki
    • 1
    Email author
  • Kengo Yotani
    • 2
  • Futoshi Ogita
    • 2
  • Keishi Hayao
    • 1
  • Kouki Nakagawa
    • 1
  • Kazuhiro Sugawara
    • 3
  • Hikari Kirimoto
    • 1
  • Hideaki Onishi
    • 1
  • Norikatsu Kasuga
    • 4
  • Noriaki Yamamoto
    • 1
    • 5
  1. 1.Institute for Human Movement and Medical SciencesNiigata University of Health and WelfareNiigataJapan
  2. 2.National Institute of Fitness and Sports in KanoyaKanoyaJapan
  3. 3.Tohoku Fukushi UniversitySendaiJapan
  4. 4.Aichi University of EducationKariyaJapan
  5. 5.Niigata Rehabilitation HospitalNiigataJapan

Personalised recommendations