Calcified Tissue International

, Volume 100, Issue 2, pp 150–164 | Cite as

DXA-Based Measurements in Diabetes: Can They Predict Fracture Risk?

  • G. Isanne Schacter
  • William D. Leslie


In the absence of a fragility fracture, osteoporosis is usually diagnosed from bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA). Osteoporosis is an increasingly prevalent disease, as is diabetes [in particular type 2 diabetes (T2D)], in part due to aging populations worldwide. It has been suggested that an increased risk of fracture may be another complication ensuing from longstanding diabetes. The purpose of this review is to concentrate on skeletal parameters and techniques readily available from DXA scanning, and their utility in routine clinical practice for predicting fracture risk. In addition to BMD, other applications and measures from DXA include trabecular bone score (TBS), skeletal geometry and DXA-based finite-element analysis, vertebral fracture assessment, and body composition. In type 1 diabetes (T1D), BMD and FRAXR (when secondary osteoporosis is included without BMD) only partially account for the excess risk of fracture in T1D. Consistent data exist to show that BMD and FRAXR can be used to stratify fracture risk in T2D, but do not account for the increased risk of fracture. However, several adjustments to the FRAX score can be made as proxies for T2D to inform the use of FRAX by primary care practitioners. Examples include using the rheumatoid arthritis input (as a proxy for T2D), lumbar spine TBS (to adjust FRAX probability) or an altered hip T-score (lowered by 0.5 units). These adjustments can improve fracture risk prediction in T2D and help to avoid systematically underestimating the risk of osteoporosis-related fractures in those with diabetes.


Diabetes Fracture risk Osteoporosis Dual-energy X-ray absorptiometry FRAX Bone geometry 


Conflict of interest

G. Isanne Schacter and William D. Leslie declare that they have no conflict of interest.


  1. 1.
    Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475CrossRefPubMedGoogle Scholar
  2. 2.
    Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194CrossRefPubMedGoogle Scholar
  3. 3.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ (Clin Res Ed.) 312(7041):1254–1259CrossRefGoogle Scholar
  4. 4.
    Cole ZA, Dennison EM, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheumatol Rep 10(2):92–96CrossRefPubMedGoogle Scholar
  5. 5.
    Menke A, Casagrande S, Geiss L, Cowie CC (2015) Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314(10):1021–1029CrossRefPubMedGoogle Scholar
  6. 6.
    Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166(5):495–505CrossRefPubMedGoogle Scholar
  7. 7.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18(4):427–444CrossRefPubMedGoogle Scholar
  8. 8.
    Ma L, Oei L, Jiang L et al (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27(5):319–332CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kume S, Kato S, Yamagishi S et al (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20(9):1647–1658CrossRefPubMedGoogle Scholar
  10. 10.
    Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 1126:166–172CrossRefPubMedGoogle Scholar
  11. 11.
    Burghardt AJ, Issever AS, Schwartz AV et al (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pritchard JM, Giangregorio LM, Atkinson SA et al (2012) Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. Arthritis Care Res 64(1):83–91CrossRefGoogle Scholar
  13. 13.
    Petit MA, Paudel ML, Taylor BC et al (2010) Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study. J Bone Miner Res 25(2):285–291CrossRefPubMedGoogle Scholar
  14. 14.
    Bolotin HH, Sievanen H, Grashuis JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18(6):1020–1027CrossRefPubMedGoogle Scholar
  15. 15.
    Hangartner TN, Johnston CC (1990) Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner 9(1):71–81CrossRefPubMedGoogle Scholar
  16. 16.
    Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27(1):119–124CrossRefPubMedGoogle Scholar
  17. 17.
    Yu EW, Bouxsein ML, Roy AE et al (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29(3):542–550CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dawson-Hughes B, Dallal GE (1990) Effect of radiographic abnormalities on rate of bone loss from the spine. Calcif Tissue Int 46(4):280–281CrossRefPubMedGoogle Scholar
  19. 19.
    Greenspan SL, Maitland LA, Myers ER, Krasnow MB, Kido TH (1994) Femoral bone loss progresses with age: a longitudinal study in women over age 65. J Bone Miner Res 9(12):1959–1965CrossRefPubMedGoogle Scholar
  20. 20.
    Johansson H, Kanis JA, Oden A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29(1):223–233CrossRefPubMedGoogle Scholar
  21. 21.
    Kayath MJ, Tavares EF, Dib SA, Vieira JG (1998) Prospective bone mineral density evaluation in patients with insulin-dependent diabetes mellitus. J Diabetes Complicat 12(3):133–139CrossRefPubMedGoogle Scholar
  22. 22.
    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44(7):775–782CrossRefPubMedGoogle Scholar
  23. 23.
    Miazgowski T, Czekalski S (1998) A 2-year follow-up study on bone mineral density and markers of bone turnover in patients with long-standing insulin-dependent diabetes mellitus. Osteoporos Int 8(5):399–403CrossRefPubMedGoogle Scholar
  24. 24.
    Miazgowski T, Pynka S, Noworyta-Zietara M, Krzyzanowska-Swiniarska B, Pikul R (2007) Bone mineral density and hip structural analysis in type 1 diabetic men. Eur J Endocrinol/Eur Fed Endocr Soc 156(1):123–127CrossRefGoogle Scholar
  25. 25.
    Hamilton EJ, Rakic V, Davis WA et al (2012) A five-year prospective study of bone mineral density in men and women with diabetes: the Fremantle Diabetes Study. Acta Diabetol 49(2):153–158CrossRefPubMedGoogle Scholar
  26. 26.
    Maser RE, Kolm P, Modlesky CM, Beck TJ, Lenhard MJ (2012) Hip strength in adults with type 1 diabetes is associated with age at onset of diabetes. J Clin Densitom 15(1):78–85CrossRefPubMedGoogle Scholar
  27. 27.
    Joshi A, Varthakavi P, Chadha M, Bhagwat N (2013) A study of bone mineral density and its determinants in type 1 diabetes mellitus. J osteoporos 2013:397814CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mastrandrea LD, Wactawski-Wende J, Donahue RP, Hovey KM, Clark A, Quattrin T (2008) Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 31(9):1729–1735CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu EY, Wactawski-Wende J, Donahue RP, Dmochowski J, Hovey KM, Quattrin T (2003) Does low bone mineral density start in post-teenage years in women with type 1 diabetes? Diabetes Care 26(8):2365–2369CrossRefPubMedGoogle Scholar
  30. 30.
    Strotmeyer ES, Cauley JA, Orchard TJ, Steenkiste AR, Dorman JS (2006) Middle-aged premenopausal women with type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care 29(2):306–311CrossRefPubMedGoogle Scholar
  31. 31.
    Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV et al (2013) Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care 36(6):1635–1640CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Leidig-Bruckner G, Grobholz S, Bruckner T, Scheidt-Nave C, Nawroth P, Schneider JG (2014) Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr Disord 14:33CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16(12):1713–1720CrossRefPubMedGoogle Scholar
  34. 34.
    Schwartz AV, Vittinghoff E, Bauer DC et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21):2184–2192CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Napoli N, Strotmeyer ES, Ensrud KE et al (2014) Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57(10):2057–2065CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metabol 91(9):3404–3410CrossRefGoogle Scholar
  37. 37.
    Leslie WD, Morin SN, Lix LM, Majumdar SR (2014) Does diabetes modify the effect of FRAX risk factors for predicting major osteoporotic and hip fracture? Osteoporos Int 25(12):2817–2824CrossRefPubMedGoogle Scholar
  38. 38.
    Broy SB, Cauley JA, Lewiecki ME, Schousboe JT, Shepherd JA, Leslie WD (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 iscd official positions part 1: hip geometry. J Clin Densitom 18(3):287–308CrossRefPubMedGoogle Scholar
  39. 39.
    Pisharody S, Phillips R, Langton CM (2008) Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density. Proc Inst Mech Eng [H] 222(3):367–375CrossRefGoogle Scholar
  40. 40.
    Naylor KE, McCloskey EV, Eastell R, Yang L (2013) Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J Bone Miner Res 28(5):1014–1021CrossRefPubMedGoogle Scholar
  41. 41.
    Vaananen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H (2015) Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal 24(1):125–134CrossRefPubMedGoogle Scholar
  42. 42.
    Ferdous Z, Luo Y (2015) Study of hip fracture risk by DXA-based patient-specific finite element model. Bio-Med Mater Eng 25(2):213–220Google Scholar
  43. 43.
    Leslie WD, Lix LM, Morin SN et al (2015) Hip axis length is a FRAX- and bone density-independent risk factor for hip fracture in women. J Clin Endocrinol Metab 100(5):2063–2070CrossRefPubMedGoogle Scholar
  44. 44.
    Leslie WD, Lix LM, Morin SN et al (2016) Adjusting hip fracture probability in men and women using hip axis length: the Manitoba bone density database. J Clin Densitom 19(3):326–331CrossRefPubMedGoogle Scholar
  45. 45.
    Akeroyd JM, Suarez EA, Bartali B et al (2014) Differences in skeletal and non-skeletal factors in a diverse sample of men with and without type 2 diabetes mellitus. J Diabetes Complicat 28(5):679–683CrossRefPubMedGoogle Scholar
  46. 46.
    Yang L, Palermo L, Black DM, Eastell R (2014) Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA Scans in the study of osteoporotic fractures. J Bone Miner Res 29(12):2594–2600CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R (2009) Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res 24(1):33–42CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Garg R, Chen Z, Beck T et al (2012) Hip geometry in diabetic women: implications for fracture risk. Metab Clin Exp 61(12):1756–1762CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Moseley KF, Dobrosielski DA, Stewart KJ, Sellmeyer DE, Jan De Beur SM (2011) Lean mass predicts hip geometry in men and women with non-insulin-requiring type 2 diabetes mellitus. J Clin Densitom 14(3):332–339CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hamilton CJ, Jamal SA, Beck TJ et al (2013) Evidence for impaired skeletal load adaptation among Canadian women with type 2 diabetes mellitus: insight into the BMD and bone fragility paradox. Metab Clin Exp 62(10):1401–1405CrossRefPubMedGoogle Scholar
  51. 51.
    Ishii S, Cauley JA, Crandall CJ et al (2012) Diabetes and femoral neck strength: findings from the hip strength across the menopausal transition study. J Clin Endocrinol Metab 97(1):190–197CrossRefPubMedGoogle Scholar
  52. 52.
    Hadjidakis DJ, Raptis AE, Sfakianakis M, Mylonakis A, Raptis SA (2006) Bone mineral density of both genders in Type 1 diabetes according to bone composition. J Diabetes Complicat 20(5):302–307CrossRefPubMedGoogle Scholar
  53. 53.
    McCloskey EV, Oden A, Harvey NC et al (2015) Adjusting fracture probability by trabecular bone score. Calcif Tissue Int 96(6):500–509CrossRefPubMedGoogle Scholar
  54. 54.
    Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom 18(3):309–330CrossRefPubMedGoogle Scholar
  55. 55.
    Leslie WDBN (2016) Spine bone texture and the trabecular bone score (TBS). In: Preedy VBPaVR (ed) Biomarkers in disease methods, discoveries and applications. Springer, New YorkGoogle Scholar
  56. 56.
    Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26(11):2762–2769CrossRefPubMedGoogle Scholar
  57. 57.
    Leslie WD, Aubry-Rozier B, Lamy O, Hans D (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98(2):602–609CrossRefPubMedGoogle Scholar
  58. 58.
    McCloskey EV, Oden A, Harvey NC et al (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940–948CrossRefPubMedGoogle Scholar
  59. 59.
    Neumann T, Lodes S, Kastner B et al (2016) Trabecular bone score in type 1 diabetes-a cross-sectional study. Osteoporos Int 27(1):127–133CrossRefPubMedGoogle Scholar
  60. 60.
    Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM (2014) Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int 25(7):1969–1973CrossRefPubMedGoogle Scholar
  61. 61.
    Kim JH, Choi HJ, Ku EJ et al (2015) Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab 100(2):475–482CrossRefPubMedGoogle Scholar
  62. 62.
    Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16(7):717–728CrossRefPubMedGoogle Scholar
  63. 63.
    Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165(14):1612–1617CrossRefPubMedGoogle Scholar
  64. 64.
    Crans GG, Genant HK, Krege JH (2005) Prognostic utility of a semiquantitative spinal deformity index. Bone 37(2):175–179CrossRefPubMedGoogle Scholar
  65. 65.
    Rosen HN, Vokes TJ, Malabanan AO et al (2013) The official positions of the international society for clinical densitometry: vertebral fracture assessment. J Clin Densitom 16(4):482–488CrossRefPubMedGoogle Scholar
  66. 66.
    Chou SH, Vokes TJ, Ma SL, Costello M, Rosen HR, Schousboe JT (2014) Simplified criteria for selecting patients for vertebral fracture assessment. J Clin Densitom 17(3):386–391CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lewiecki EM, Laster AJ (2006) Clinical review: clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 91(11):4215–4222CrossRefPubMedGoogle Scholar
  68. 68.
    Leslie WD, Lix LM, Prior HJ, Derksen S, Metge C, O’Neil J (2007) Biphasic fracture risk in diabetes: a population-based study. Bone 40(6):1595–1601CrossRefPubMedGoogle Scholar
  69. 69.
    Gelber RP, Gaziano JM, Orav EJ, Manson JE, Buring JE, Kurth T (2008) Measures of obesity and cardiovascular risk among men and women. J Am Coll Cardiol 52(8):605–615CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Storti KL, Brach JS, FitzGerald SJ, Bunker CH, Kriska AM (2006) Relationships among body composition measures in community-dwelling older women. Obesity (Silver Spring, Md.) 14(2):244–251CrossRefGoogle Scholar
  71. 71.
    Albanese CV, Diessel E, Genant HK (2003) Clinical applications of body composition measurements using DXA. J Clin Densitom 6(2):75–85CrossRefPubMedGoogle Scholar
  72. 72.
    Schacter GI, Leslie WD (2015) Spine-hip thickness difference measured by dual-energy X-ray absorptiometry is associated with diabetes mellitus in women and men. J Clin Densitom 18(4):512–518CrossRefPubMedGoogle Scholar
  73. 73.
    Ho-Pham LT, Nguyen UD, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99(1):30–38CrossRefPubMedGoogle Scholar
  74. 74.
    Leslie WD, Orwoll ES, Nielson CM et al (2014) Estimated lean mass and fat mass differentially affect femoral bone density and strength index but are not FRAX independent risk factors for fracture. J Bone Miner Res 29(11):2511–2519CrossRefPubMedGoogle Scholar
  75. 75.
    Cauley JA (2015) An overview of sarcopenic obesity. J Clin Densitom 18(4):499–505CrossRefPubMedGoogle Scholar
  76. 76.
    Malkov S, Cawthon PM, Peters KW et al (2015) Hip fractures risk in older men and women associated with DXA-derived measures of thigh subcutaneous fat thickness, cross-sectional muscle area, and muscle density. J Bone Miner Res 30(8):1414–1421CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Cawthon PM (2015) Assessment of lean mass and physical performance in sarcopenia. J Clin Densitom 18(4):467–471CrossRefPubMedGoogle Scholar
  78. 78.
    Chalhoub D, Cawthon PM, Ensrud KE et al (2015) Risk of nonspine fractures in older adults with sarcopenia, low bone mass, or both. J Am Geriatr Soc 63(9):1733–1740CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Abd El Dayem SM, El-Shehaby AM, Abd El Gafar A, Fawzy A, Salama H (2011) Bone density, body composition, and markers of bone remodeling in type 1 diabetic patients. Scand J Clin Lab Investig 71(5):387–393CrossRefGoogle Scholar
  80. 80.
    Direk K, Cecelja M, Astle W et al (2013) The relationship between DXA-based and anthropometric measures of visceral fat and morbidity in women. BMC Cardiovasc Disord 13:25CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Porter SA, Massaro JM, Hoffmann U, Vasan RS, O’Donnel CJ, Fox CS (2009) Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care 32(6):1068–1075CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Leslie WD, Ludwig SM, Morin S (2010) Abdominal fat from spine dual-energy X-ray absorptiometry and risk for subsequent diabetes. J Clin Endocrinol Metab 95(7):3272–3276CrossRefPubMedGoogle Scholar
  83. 83.
    Moseley KF, Dobrosielski DA, Stewart KJ, De Beur SM, Sellmeyer DE (2011) Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus. Clin Endocrinol 74(5):565–571CrossRefGoogle Scholar
  84. 84.
    von Eyben FE, Mouritsen E, Holm J et al (2003) Intra-abdominal obesity and metabolic risk factors: a study of young adults. Int J obes Related Metab Disord 27(8):941–949CrossRefGoogle Scholar
  85. 85.
    Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93(11 Suppl 1):S57–S63CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Rothney MP, Catapano AL, Xia J et al (2013) Abdominal visceral fat measurement using dual-energy X-ray: association with cardiometabolic risk factors. Obesity (Silver Spring, Md.) 21(9):1798–1802Google Scholar
  87. 87.
    Kanis JA (2008) Assessment of osteoporosis at the primary health-care level. Technical Report. WHO Collaborating Centre for Metabolic Bone Disease, University of Sheffield, UKGoogle Scholar
  88. 88.
    Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E (2009) FRAX and its applications to clinical practice. Bone 44(5):734–743CrossRefPubMedGoogle Scholar
  89. 89.
    Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV (2007) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18(8):1109–1117CrossRefPubMedGoogle Scholar
  90. 90.
    Langsetmo L, Nguyen TV, Nguyen ND et al (2011) Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture. CMAJ Can Med Assoc J 183(2):E107–E114CrossRefGoogle Scholar
  91. 91.
    Hippisley-Cox J, Coupland C (2009) Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ (Clin Res Ed.) 339:b4229CrossRefGoogle Scholar
  92. 92.
    Hough FS, Pierroz DD, Cooper C, Ferrari SL (2016) MECHANISMS IN ENDOCRINOLOGY: Mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur J Endocrinol/Eur Fed Endocr Soc 174(4):R127–R138CrossRefGoogle Scholar
  93. 93.
    Giangregorio LM, Leslie WD, Lix LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Min Res 27(2):301–308CrossRefGoogle Scholar
  94. 94.
    Kanis JA, Hans D, Cooper C et al (2011) Interpretation and use of FRAX in clinical practice. Osteoporos Int 22(9):2395–2411CrossRefPubMedGoogle Scholar
  95. 95.
    Lecka-Czernik B, Fowlkes J (eds) (2016) Diabetic bone disease: basic and translational research and clinical applications. Springer International Publishing, SwitzerlandGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MedicineUniversity of ManitobaWinnipegCanada
  2. 2.WinnipegCanada

Personalised recommendations