Advertisement

Calcified Tissue International

, Volume 97, Issue 2, pp 134–144 | Cite as

Characterising Bone Material Composition and Structure in the Ovariectomized (OVX) Rat Model of Osteoporosis

  • Neashan MathavanEmail author
  • Mikael J. Turunen
  • Magnus Tägil
  • Hanna Isaksson
Original Research

Abstract

The ovariectomized (OVX) rat model is well established in investigations of osteoporosis and osteoporotic therapies. Advent of techniques such as Fourier-transform infrared (FTIR) spectroscopy and small angle X-ray scattering (SAXS) facilitate characterization of bone composition and mineral structure, respectively, which are key determinants of bone strength. Limited publications exist on the implementation of these techniques in the OVX rat model. At 12 weeks of age, female Sprague–Dawley rats were either sham-operated (n = 6) or ovariectomized (n = 6) and sacrificed 18 weeks later. L2 lumbar vertebrae and proximal tibiae were assessed by µCT, FTIR and SAXS. Presence of extensive trabecular deterioration in the µCT data confirmed the onset of osteoporosis. FTIR compositional parameters were determined including measures of degree of mineralization, crystallinity, collagen maturity and acid phosphate content. Mineral crystal thickness was determined from the SAXS data using two approaches available in literature. Compositionally, a decline in the heterogeneity of acid phosphate content was observed while measures of crystallinity and collagen maturity remained unaltered. Using an iterative curve fitting method, OVX-induced increases in the mineral crystal thickness of 3.8 and 7.8 % (p < 0.05) were noted in the trabecular of the vertebra and tibia, respectively. In conclusion, implementation of FTIR and SAXS techniques in the OVX rat model, identified no significant compositional changes while substantiating thickening of the mineral crystals as a general structural feature of OVX-induced osteoporosis in rats.

Keywords

Osteoporosis Bone composition Bone structure Fourier-transform infrared spectroscopy FTIR Small angle X-ray scattering SAXS 

Notes

Acknowledgments

Funding for this study from the European Commission (FRACQUAL-293434) and the Swedish Governmental Agency for Innovation Systems (VINNOVA) is acknowledged. Beamtime was generously granted at the I911-SAXS beamline and the D7 beamline at MAX IV Laboratory, Lund, Sweden. The authors would also like to gratefully acknowledge the technical assistance of Mea Pelkonen, Ana Labrador (I911-SAXS beamline) and Anders Engdahl (D7 beamline).

Conflict of interest

Authors Neashan Mathavan, Mikael J. Turunen, Magnus Tägil and Hanna Isaksson declare that they have no conflict of interest.

Statement of animal rights and informed consent

All procedures performed in this study were in accordance with the ethical standards of Lund University, Sweden, where the study was conducted. All institutional and national guidelines for the care and use of laboratory animals were followed.

References

  1. 1.
    Bagi CM, Wilkie D, Georgelos K, Williams D, Bertolini D (1997) Morphological and structural characteristics of the proximal femur in human and rat. Bone 21(3):261–267. doi: 10.1016/S8756-3282(97)00121-X PubMedCrossRefGoogle Scholar
  2. 2.
    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191. doi: 10.1016/0169-6009(91)90124-I PubMedCrossRefGoogle Scholar
  3. 3.
    Faibish D, Ott SM, Boskey AL (2006) Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 443:28–38. doi: 10.1097/01.blo.0000200241.14684.4e PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Boskey A (2003) Bone mineral crystal size. Osteoporos Int 14(Suppl 5):S16–20 discussion S20-11Google Scholar
  5. 5.
    Bohic S, Rey C, Legrand A, Sfihi H, Rohanizadeh R, Martel C, Barbier A, Daculsi G (2000) Characterization of the trabecular rat bone mineral: effect of ovariectomy and bisphosphonate treatment. Bone 26(4):341–348. doi: 10.1016/S8756-3282(99)00276-8 PubMedCrossRefGoogle Scholar
  6. 6.
    Ouyang H, Sherman PJ, Paschalis EP, Boskey AL, Mendelsohn R (2004) Fourier transform infrared microscopic imaging: effects of estrogen and estrogen deficiency on fracture healing in rat femurs. Appl Spectrosc 58(1):1–9. doi: 10.1366/000370204322729405 PubMedCrossRefGoogle Scholar
  7. 7.
    Huang J, Wang X, Zhang T-L, Wang K (2009) Alterations of ovariectomized rat bone and impact of non-collagenous proteins on mineralization. Joint Bone Spine 76(2):176–183. doi: 10.1016/j.jbspin.2008.04.017 PubMedCrossRefGoogle Scholar
  8. 8.
    Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34(3):443–453. doi: 10.1016/j.bone.2003.11.003 PubMedCrossRefGoogle Scholar
  9. 9.
    Valenta A, Roschger P, Fratzl-Zelman N, Kostenuik PJ, Dunstan CR, Fratzl P, Klaushofer K (2005) Combined treatment with PTH (1–34) and OPG increases bone volume and uniformity of mineralization in aged ovariectomized rats. Bone 37(1):87–95PubMedCrossRefGoogle Scholar
  10. 10.
    Bünger M, Oxlund H, Hansen T, Sørensen S, Bibby B, Thomsen J, Langdahl B, Besenbacher F, Pedersen J, Birkedal H (2010) Strontium and bone nanostructure in normal and ovariectomized rats investigated by scanning small-angle X-ray scattering. Calcif Tissue Int 86(4):294–306. doi: 10.1007/s00223-010-9341-8 PubMedCrossRefGoogle Scholar
  11. 11.
    Yao W, Cheng Z, Koester KJ, Ager JW, Balooch M, Pham A, Chefo S, Busse C, Ritchie RO, Lane NE (2007) The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone 41(5):804–812. doi: 10.1016/j.bone.2007.06.021 PubMedCrossRefGoogle Scholar
  12. 12.
    Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34(4):247–254. doi: 10.3109/03008209609005268 PubMedCrossRefGoogle Scholar
  13. 13.
    Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J Clin Invest 97(2):396–402PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64(5):422–429. doi: 10.1007/pl00005824 PubMedCrossRefGoogle Scholar
  15. 15.
    Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14(14):2115–2123CrossRefGoogle Scholar
  16. 16.
    Isaksson H, Turunen MJ, Rieppo L, Saarakkala S, Tamminen IS, Rieppo J, Kröger H, Jurvelin JS (2010) Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J Bone Miner Res 25(6):1360–1366. doi: 10.1002/jbmr.10 PubMedCrossRefGoogle Scholar
  17. 17.
    Turunen MJ, Lages S, Labrador A, Olsson U, Tägil M, Jurvelin JS, Isaksson H (2014) Evaluation of composition and mineral structure of callus tissue in rat femoral fracture. J Biomed Opt 19(2):025003. doi: 10.1117/1.JBO.19.2.025003 PubMedCrossRefGoogle Scholar
  18. 18.
    Boskey A, Pleshko Camacho N (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28(15):2465–2478. doi: 10.1016/j.biomaterials.2006.11.043 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Rey C, Collins B, Goehl T, Dickson I, Glimcher M (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45(3):157–164PubMedCrossRefGoogle Scholar
  20. 20.
    Pleshko N, Boskey A, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60(4):786–793PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58(1):9–16. doi: 10.1007/BF02509540 PubMedCrossRefGoogle Scholar
  22. 22.
    Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16(10):1821–1828. doi: 10.1359/jbmr.2001.16.10.1821 PubMedCrossRefGoogle Scholar
  23. 23.
    Spevak L, Flach C, Hunter T, Mendelsohn R, Boskey A (2013) Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int 92(5):418–428. doi: 10.1007/s00223-013-9695-9 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Turunen MJ, Saarakkala S, Helminen HJ, Jurvelin JS, Isaksson H (2011) Age-related changes in organization and content of the collagen matrix in rabbit cortical bone. J Orthop Res 30(3):435–442. doi: 10.1002/jor.21538 PubMedCrossRefGoogle Scholar
  25. 25.
    Labrador A, Cerenius Y, Svensson C, Theodor K, Plivelic T (2013) The yellow mini-hutch for SAXS experiments at MAX IV Laboratory. J Phys 7:072019Google Scholar
  26. 26.
    Boyd SK, Davison P, Müller R, Gasser JA (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39(4):854–862PubMedCrossRefGoogle Scholar
  27. 27.
    Maïmoun L, Brennan-Speranza TC, Rizzoli R, Ammann P (2012) Effects of ovariectomy on the changes in microarchitecture and material level properties in response to hind leg disuse in female rats. Bone 51(3):586–591PubMedCrossRefGoogle Scholar
  28. 28.
    Brouwers JEM, Lambers FM, van Rietbergen B, Ito K, Huiskes R (2009) Comparison of bone loss induced by ovariectomy and neurectomy in rats analyzed by in vivo micro-CT. J Orthop Res 27(11):1521–1527. doi: 10.1002/jor.20913 PubMedCrossRefGoogle Scholar
  29. 29.
    Boskey A, Mendelsohn R (2005) Infrared analysis of bone in health and disease. J Biomed Opt 10(3):031102PubMedCrossRefGoogle Scholar
  30. 30.
    Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, Peterson M, Rimnac CM (2000) A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (macaca fascicularis). Bone 27(4):541–550. doi: 10.1016/S8756-3282(00)00362-8 PubMedCrossRefGoogle Scholar
  31. 31.
    Busse B, Hahn M, Soltau M, Zustin J, Püschel K, Duda GN, Amling M (2009) Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 45(6):1034–1043. doi: 10.1016/j.bone.2009.08.002 PubMedCrossRefGoogle Scholar
  32. 32.
    Boyde A, Compston JE, Reeve J, Bell KL, Noble BS, Jones SJ, Loveridge N (1998) Effect of estrogen suppression on the mineralization density of iliac crest biopsies in young women as assessed by backscattered electron imaging. Bone 22(3):241–250. doi: 10.1016/S8756-3282(97)00275-5 PubMedCrossRefGoogle Scholar
  33. 33.
    Koehne T, Vettorazzi E, Küsters N, Lüneburg R, Kahl-Nieke B, Püschel K, Amling M, Busse B (2014) Trends in trabecular architecture and bone mineral density distribution in 152 individuals aged 30–90 years. Bone 66:31–38. doi: 10.1016/j.bone.2014.05.010 PubMedCrossRefGoogle Scholar
  34. 34.
    Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16(12):2031–2038. doi: 10.1007/s00198-005-1992-3 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61(6):487–492. doi: 10.1007/s002239900372 PubMedCrossRefGoogle Scholar
  36. 36.
    Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19(12):2000–2004. doi: 10.1359/jbmr.040820 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141(3):208–217. doi: 10.1016/S1047-8477(02)00635-4 PubMedCrossRefGoogle Scholar
  38. 38.
    Bonar LC, Lees S, Mook HA (1985) Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol 181(2):265–270. doi: 10.1016/0022-2836(85)90090-7 PubMedCrossRefGoogle Scholar
  39. 39.
    Roschger P, Grabner BM, Rinnerthaler S, Tesch W, Kneissel M, Berzlanovich A, Klaushofer K, Fratzl P (2001) Structural development of the mineralized tissue in the human L4 vertebral body. J Struct Biol 136(2):126–136PubMedCrossRefGoogle Scholar
  40. 40.
    Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48(6):407–413. doi: 10.1007/BF02556454 PubMedCrossRefGoogle Scholar
  41. 41.
    Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol 6:121PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Neashan Mathavan
    • 1
    Email author
  • Mikael J. Turunen
    • 2
  • Magnus Tägil
    • 3
  • Hanna Isaksson
    • 1
    • 3
  1. 1.Department of Biomedical EngineeringLund UniversityLundSweden
  2. 2.Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
  3. 3.Department of OrthopaedicsLund UniversityLundSweden

Personalised recommendations