Calcified Tissue International

, Volume 98, Issue 3, pp 294–305 | Cite as

Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix Mineralization by Cultured Human Osteoblasts

  • Mark O. DeNichiloEmail author
  • Alexandra J. Shoubridge
  • Vasilios Panagopoulos
  • Vasilios Liapis
  • Aneta Zysk
  • Irene Zinonos
  • Shelley Hay
  • Gerald J. Atkins
  • David M. Findlay
  • Andreas Evdokiou
Original Research


The early recruitment of inflammatory cells to sites of bone fracture and trauma is a critical determinant in successful fracture healing. Released by infiltrating inflammatory cells, myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, whose functional involvement in bone repair has mainly been studied in the context of providing a mechanism for oxidative defense against invading microorganisms. We report here novel findings that show peroxidase enzymes have the capacity to stimulate osteoblastic cells to secrete collagen I protein and generate a mineralized extracellular matrix in vitro. Mechanistic studies conducted using cultured osteoblasts show that peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl hydroxylase-dependent manner, which does not require ascorbic acid. Our studies demonstrate that osteoblasts rapidly bind and internalize both MPO and EPO, and the catalytic activity of these peroxidase enzymes is essential to support collagen I biosynthesis and subsequent release of collagen by osteoblasts. We show that EPO is capable of regulating osteogenic gene expression and matrix mineralization in culture, suggesting that peroxidase enzymes may play an important role not only in normal bone repair, but also in the progression of pathological states where infiltrating inflammatory cells are known to deposit peroxidases.


Peroxidase enzymes Osteoblasts Collagen biosynthesis Matrix mineralization 



This work was supported in part by The Hospital Research Foundation and the National Health and Medical Research Council (Career Development Fellowship/627015; Project Grant/1050694).

Compliance with Ethical Standards

Conflict of Interest

Mark O. DeNichilo, Alexandra J. Shoubridge, Vasilios Panagopoulos, Vasilios Liapis, Aneta Zysk, Irene Zinonos, Shelley Hay, Gerald J. Atkins, David M. Findlay, and Andreas Evdokiou declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The use of all normal human donor-derived bone tissue was approved by the human ethics committees of the Royal Adelaide Hospital/University of Adelaide (Approval No. RAH130114). Human bone samples were obtained with informed written donor consent, as required and approved by the ethics committee.


  1. 1.
    Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143CrossRefPubMedGoogle Scholar
  2. 2.
    Prasad GC, Udupa KN (1972) Studies on ultrastructural patter of osteogenic cells during bone repair. Acta Orthop Scand 43:163–175CrossRefPubMedGoogle Scholar
  3. 3.
    Andrew JG, Andrew SM, Freemont AJ, Marsh DR (1994) Inflammatory cells in normal human fracture healing. Acta Orthop Scand 65:462–466CrossRefPubMedGoogle Scholar
  4. 4.
    Bastian O, Pillay J, Alblas L, Leenen L, Koenderman L, Blokhuis T (2011) Systemic inflammation and fracture healing. J Leukoc Biol 89:669–673CrossRefPubMedGoogle Scholar
  5. 5.
    Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404CrossRefPubMedGoogle Scholar
  6. 6.
    Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11:45–54PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Grundnes O, Reikeras O (1993) The importance of the hematoma for fracture healing in rats. Acta Orthop Scand 64:340–342CrossRefPubMedGoogle Scholar
  8. 8.
    Kolar P, Schmidt-Bleek K, Schell H et al (2010) The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B 16:427–434CrossRefGoogle Scholar
  9. 9.
    Davies MJ, Hawkins CL, Pattison DI, Rees M (2008) Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1199–1234CrossRefPubMedGoogle Scholar
  10. 10.
    Van der Veen BS, de Winther MPJ, Heeringa P (2009) Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 11:2899–2937CrossRefPubMedGoogle Scholar
  11. 11.
    Acharya KR, Ackerman SJ (2014) Eosinophil granule proteins: form and function. J Biol Chem 289:17406–17415PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Klebanoff SJ (2005) Myeloperoxidase: friend or foe. J Leukoc Biol 77:598–625CrossRefPubMedGoogle Scholar
  13. 13.
    DeNichilo MO, Panagopoulos V, Rayner TE et al (2015) Peroxidase enzymes regulate collagen extracellular matrix biosynthesis. Am J Pathol 185:1372–1384CrossRefPubMedGoogle Scholar
  14. 14.
    Panagopoulos V, Zinonos I, Leach DA et al (2015) Uncovering a new role for peroxidase enzymes as drivers of angiogenesis. Int J Biochem Cell Biol 68:128–138CrossRefPubMedGoogle Scholar
  15. 15.
    Atkins GJ, Kostakis P, Pan B et al (2003) RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res 18:1088–1098CrossRefPubMedGoogle Scholar
  16. 16.
    Kettle AJ, Gedye CA, Winterbourn CC (1997) Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochem J 321:503–508PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Carinci F, Pezzetti F, Spina A et al (2005) Effect of Vitamin C on pre-osteoblast gene expression. Arch Oral Biol 50:481–496CrossRefPubMedGoogle Scholar
  18. 18.
    Maehata Y, Takamizawa S, Ozawa S et al (2007) Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol 26:371–381CrossRefPubMedGoogle Scholar
  19. 19.
    Kivirikko KI, Myllylä R, Pihlajaniemi T (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J 3:1609–1617PubMedGoogle Scholar
  20. 20.
    Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21CrossRefPubMedGoogle Scholar
  21. 21.
    Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353CrossRefPubMedGoogle Scholar
  22. 22.
    Baader E, Tschank G, Baringhaus K, Burghard H, Günzler V (1994) Inhibition of prolyl 4-hydroxylase by oxalyl amino acid derivatives in vitro, in isolated microsomes and in embryonic chicken tissues. Biochem J 300:525–530PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Rosen V (2009) BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20:475–480CrossRefPubMedGoogle Scholar
  24. 24.
    Harris NL, Rattray KR, Tye CE et al (2000) Functional analysis of bone sialoprotein: identification of the hydroxyapatite-nucleating and cell-binding domains by recombinant peptide expression and site-directed mutagenesis. Bone 27:795–802CrossRefPubMedGoogle Scholar
  25. 25.
    Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223PubMedGoogle Scholar
  26. 26.
    Okamoto M, Udagawa N, Uehara S et al (2014) Noncanonical Wnt5a enhances Wnt/β-catenin signalling during osteoblastogenesis. Sci Rep 4:4493–4500PubMedCentralPubMedGoogle Scholar
  27. 27.
    Cox G, Einhorn TA, Tzioupis C, Giannoudis PV (2010) Bone-turnover markers in fracture healing. J Bone Joint Surg 3:329–334CrossRefGoogle Scholar
  28. 28.
    Baldus S, Eiserich JP, Mani A et al (2001) Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest 108:1759–1770PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19:1807–1819CrossRefPubMedGoogle Scholar
  30. 30.
    Gerald D, Berra E, Frapart YM et al (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794CrossRefPubMedGoogle Scholar
  31. 31.
    Page EL, Chan DA, Giaccia AJ et al (2008) Hypoxia-inducible factor-1α stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell 19:86–94PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Bai XC, Lu D, Bai J et al (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207CrossRefPubMedGoogle Scholar
  33. 33.
    Ramp WK, Arnold RR, Russell JE, Yancey JM (1987) Hydrogen peroxide inhibits glucose metabolism and collagen synthesis in bone. J Periodontol 58:340–344CrossRefPubMedGoogle Scholar
  34. 34.
    Lecanda F, Avioli LV, Cheng S (1997) Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. J Cell Biochem 67:386–398CrossRefPubMedGoogle Scholar
  35. 35.
    Robubi A, Berger C, Schmid M, Huber KR, Engel A, Krugluger W (2014) Gene expression profiles induced by growth factors in in vitro cultured osteoblasts. Bone Joint Res 3:236–240PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Furtmüller PG, Zederbauer M, Jantschko W et al (2006) Active site structural and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445:199–213CrossRefPubMedGoogle Scholar
  37. 37.
    Mehta V, Campeau NG, Kita H, Hagan JB (2008) Blood and sputum eosinophil levels in asthma and their relationships to sinus computed tomographic findings. Mayo Clin Proc 83:671–678PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Snidvongs K, McLachlan R, Chin D et al (2012) Osteitic bone: a surrogate marker of eosinophilia in chronic rhinosinusitis. Rhinology 50:299–305PubMedGoogle Scholar
  39. 39.
    Macias MP, Fitzpatrick LA, Brenneise I, McGarry MP, Lee JJ, Lee NA (2001) Expression of IL-5 alters bone metabolism and induces ossification of the spleen in transgenic mice. J Clin Invest 107:949–959PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Abu-Ghazaleh RI, Dunnette SL, Loegering DA et al (1992) Eosinophil granule proteins in peripheral blood granulocytes. J Leukoc Biol 52:611–618PubMedGoogle Scholar
  41. 41.
    Levi-Schaffer F, Garbuzenko E, Rubin A et al (1999) Human eosinophils regulate lung- and skin-derived fibroblast properties in vitro: a role for transforming growth factor β (TGF-β). Proc Natl Acad Sci USA 96:9660–9665PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Evans KN, Forsberg JA, Potter BK et al (2012) Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. Orthop Trauma 26:204–212Google Scholar
  43. 43.
    Convente MR, Wang H, Pignolo RJ, Kaplan FS, Shore EM (2015) The immunological contribution to heterotopic ossification disorders. Curr Osteoporos Rep 13:116–124CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mark O. DeNichilo
    • 1
    • 4
    Email author
  • Alexandra J. Shoubridge
    • 1
  • Vasilios Panagopoulos
    • 1
  • Vasilios Liapis
    • 1
  • Aneta Zysk
    • 1
  • Irene Zinonos
    • 1
  • Shelley Hay
    • 1
  • Gerald J. Atkins
    • 2
  • David M. Findlay
    • 2
  • Andreas Evdokiou
    • 1
    • 3
  1. 1.Breast Cancer Research Unit, Discipline of SurgeryThe University of AdelaideAdelaideAustralia
  2. 2.Discipline of Orthopaedics and TraumaThe University of AdelaideAdelaideAustralia
  3. 3.Centre for Personalized Cancer MedicineThe University of AdelaideAdelaideAustralia
  4. 4.TQEHBasil Hetzel Research InstituteWoodvilleAustralia

Personalised recommendations