Calcified Tissue International

, Volume 97, Issue 1, pp 50–57 | Cite as

Assessment of Fracture Risk in A Population of Postmenopausal Italian Women: A Comparison of Two Different Tools

  • Gloria BonaccorsiEmail author
  • Enrica Fila
  • Carlo Cervellati
  • Arianna Romani
  • Melchiore Giganti
  • Maurizio Rossini
  • Pantaleo Greco
  • Leo Massari
Original Research


The main objective of this study was to compare in the assessment of risk of fractures in postmenopausal women two algorithms for 10-year fracture risk evaluation, the WHO-endorsed FRAX® and the Italian FRAX-derived version (DeFRA), which considers BMD of different bone sites and allows the inclusion of other data. In a secondary analysis, we compared the performance of the tools in discriminating subjects who sustained previous major fractures from those who did not. The 10-year fracture risk score was evaluated in a sample of 989 climacteric women using FRAX and DeFRA tools. Bone mineral density was also included in the calculation of these algorithms. Comparing how the subjects were assigned to different risk classes by the two tools, we found that DeFRA attributed higher risk categories than FRAX, among women in the subgroups between 50 and 59 and, mostly, 60–69 years of age. ROC curve analysis showed that DeFRA had the same discriminative ability to identify previous major osteoporotic fractures compared to FRAX (AUC = 0.74 for both). If confirmed by prospective studies, our findings would suggest that DeFRA might be ascribed as at least equivalent to FRAX or perhaps slightly most appropriate in the categorization of the fracture risk, particularly in women aged 60–69 years, a period in which bone densitometry analysis is highly recommended.


Osteoporosis Menopause Fracture risk assessment FRAX DeFRA 



The Authors want to thank M. Cristina Castaldini, Stefania Ferrazzini, and Valentina Lea Poetto for their meaningful contribution in data collection and processing.

Conflict of interest

Gloria Bonaccorsi, Enrica Fila, Carlo Cervellati, Arianna Romani, Melchiore Giganti, Maurizio Rossini, Pantaleo Greco, and Leo Massari report no conflicts of interests.


This work was not supported by external funds.

Human and Animal Rights and Informed Consent

The present population-based study was conducted in accordance to the Declaration of Helsinki (World Medical Association, An informed consent was signed by all the study subjects.

Supplementary material

223_2015_9_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 90 kb)
223_2015_9_MOESM2_ESM.pdf (160 kb)
Supplementary material 2 (PDF 160 kb)


  1. 1.
    Hernlund E, Svedbom A, Ivergård M, et al. (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. doi:  10.1007/s11657-013-0136-1
  2. 2.
    Piscitelli P, Brandi M, Cawston H et al (2014) Epidemiological burden of postmenopausal osteoporosis in Italy from 2010 to 2020: estimations from a disease model. Calcif Tissue Int 95:419–427. doi: 10.1007/s00223-014-9910-3 PubMedCrossRefGoogle Scholar
  3. 3.
    Rossini M, Di Munno O, Gatti D et al (2011) Optimising bisphosphonate treatment outcomes in postmenopausal osteoporosis: review and Italian experience. Clin Exp Rheumatol 29:728–735PubMedGoogle Scholar
  4. 4.
    Kanis JA, McCloskey E, Branco J et al (2014) Goal-directed treatment of osteoporosis in Europe. Osteoporos Int 25:2533–2543. doi: 10.1007/s00198-014-2787-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381. doi: 10.1007/s00198-014-2794-2 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57. doi: 10.1007/s00198-012-2074-y PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Rubin KH, Abrahamsen B, Friis-Holmberg T et al (2013) Comparison of different screening tools (FRAX®, OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study. Bone 56:16–22. doi: 10.1016/j.bone.2013.05.002 PubMedCrossRefGoogle Scholar
  8. 8.
    Sandhu SK, Nguyen ND, Center JR et al (2010) Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporos Int 21:863–871. doi: 10.1007/s00198-009-1026-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Kanis JA, McCloskey EV, Johansson H et al (2008) Case finding for the management of osteoporosis with FRAX—assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408. doi: 10.1007/s00198-008-0712-1 PubMedCrossRefGoogle Scholar
  10. 10.
    Kanis JA, Oden A, Johansson H, McCloskey E (2013) Pitfalls in the external validation of FRAX: response to Bolland, et al. Osteoporos Int 24:391–392. doi: 10.1007/s00198-012-1985-y PubMedCrossRefGoogle Scholar
  11. 11.
    Adami S, Bianchi G, Brandi ML et al (2010) Validation and further development of the WHO 10-year fracture risk assessment tool in Italian postmenopausal women: project rationale and description. Clin Exp Rheumatol 28:561–570PubMedGoogle Scholar
  12. 12.
    Adami S, Bertoldo F, Gatti D et al (2013) Treatment thresholds for osteoporosis and reimbursability criteria: perspectives associated with fracture risk-assessment tools. Calcif Tissue Int 93:195–200. doi: 10.1007/s00223-013-9748-0 PubMedCrossRefGoogle Scholar
  13. 13.
    Schousboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom 16:455–66. doi:  10.1016/j.jocd.2013.08.004
  14. 14.
    Jane FM, Davis SR (2014) A practitioner’s toolkit for managing the menopause. Climacteric 17:564–579. doi: 10.3109/13697137.2014.929651 PubMedCrossRefGoogle Scholar
  15. 15.
    Karim R, Dell RM, Greene DF et al (2011) Hip fracture in postmenopausal women after cessation of hormone therapy: results from a prospective study in a large health management organization. Menopause 18:1172–1177. doi: 10.1097/gme.0b013e31821b01c7 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gambacciani M (2012) HRT misuse and the osteoporosis epidemic. Climacteric 15:10–11. doi: 10.3109/13697137.2011.639527 PubMedCrossRefGoogle Scholar
  17. 17.
    Trémollieres FA, Pouillès J-M, Drewniak N et al (2010) Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res 25:1002–1009. doi: 10.1002/jbmr.12 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Roux S, Cabana F, Carrier N et al (2014) The World Health Organization Fracture Risk Assessment Tool (FRAX) underestimates incident and recurrent fractures in consecutive patients with fragility fractures. J Clin Endocrinol Metab 99:2400–2408. doi: 10.1210/jc.2013-4507 PubMedCrossRefGoogle Scholar
  19. 19.
    Crandall CJ, Larson J, Gourlay ML et al (2014) Osteoporosis screening in postmenopausal women 50 to 64 years old: comparison of US Preventive Services Task Force strategy and two traditional strategies in the Women’s Health Initiative. J Bone Miner Res 29:1661–1666. doi: 10.1002/jbmr.2174 PubMedCrossRefGoogle Scholar
  20. 20.
    Baró F, Cano A, Sánchez Borrego R et al (2012) Frequency of FRAX risk factors in osteopenic postmenopausal women with and without history of fragility fracture. Menopause 19:1193–1199. doi: 10.1097/gme.0b013e31825d65c5 PubMedCrossRefGoogle Scholar
  21. 21.
    Leslie WD, Lix LM, Johansson H et al (2011) Spine-hip discordance and fracture risk assessment: a physician-friendly FRAX enhancement. Osteoporos Int 22:839–847. doi: 10.1007/s00198-010-1461-5 PubMedCrossRefGoogle Scholar
  22. 22.
    Johansson H, Kanis JA, Odén A et al (2014) Impact of femoral neck and lumbar spine BMD discordances on FRAX probabilities in women: a meta-analysis of international cohorts. Calcif Tissue Int 95:428–435. doi: 10.1007/s00223-014-9911-2 PubMedCrossRefGoogle Scholar
  23. 23.
    Rubin KH, Friis-Holmberg T, Hermann AP et al (2013) Risk assessment tools to identify women with increased risk of osteoporotic fracture: complexity or simplicity? A systematic review. J Bone Miner Res 28:1701–1717. doi: 10.1002/jbmr.1956 PubMedCrossRefGoogle Scholar
  24. 24.
    Eller-Vainicher C, Chiodini I, Santi I et al (2011) Recognition of morphometric vertebral fractures by artificial neural networks: analysis from GISMO Lombardia Database. PLoS ONE 6:e27277. doi: 10.1371/journal.pone.0027277 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    FitzGerald G, Compston JE, Chapurlat RD et al (2014) Empirically based composite fracture prediction model from the Global Longitudinal Study of Osteoporosis in Postmenopausal Women (GLOW). J Clin Endocrinol Metab 99:817–826. doi: 10.1210/jc.2013-3468 PubMedGoogle Scholar
  26. 26.
    Gregson CL, Dennison EM, Compston JE et al (2014) Disease-specific perception of fracture risk and incident fracture rates: GLOW cohort study. Osteoporos Int 25:85–95. doi: 10.1007/s00198-013-2438-y PubMedCrossRefGoogle Scholar
  27. 27.
    Rubin KH, Holmberg T, Rothmann MJ et al (2015) The Risk-Stratified Osteoporosis Strategy Evaluation study (ROSE): a Randomized Prospective Population-Based Study. Design and Baseline Characteristics. Calcif Tissue Int 96:167–179. doi: 10.1007/s00223-014-9950-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gloria Bonaccorsi
    • 1
    Email author
  • Enrica Fila
    • 1
  • Carlo Cervellati
    • 2
  • Arianna Romani
    • 2
  • Melchiore Giganti
    • 3
  • Maurizio Rossini
    • 4
  • Pantaleo Greco
    • 5
  • Leo Massari
    • 6
  1. 1.Department of Morphology, Surgery and Experimental Medicine, Menopause and Osteoporosis CentreUniversity of FerraraFerraraItaly
  2. 2.Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and GeneticsUniversity of FerraraFerraraItaly
  3. 3.Department of Morphology, Surgery and Experimental Medicine, Laboratory of Nuclear MedicineUniversity of FerraraCona, FerraraItaly
  4. 4.Rheumatology Unit, Department of MedicineUniversity of VeronaVeronaItaly
  5. 5.Department of Morphology, Surgery and Experimental Medicine, Section of Obstetric and GynaecologyUniversity of FerraraCona, FerraraItaly
  6. 6.Department of Morphology, Surgery and Experimental Medicine, Section of Orthopedic ClinicUniversity of FerraraCona, FerraraItaly

Personalised recommendations