Calcified Tissue International

, Volume 96, Issue 1, pp 30–37 | Cite as

Analysis of the Bone MicroRNome in Osteoporotic Fractures

  • Pablo Garmilla-Ezquerra
  • Carolina Sañudo
  • Jesús Delgado-Calle
  • María I. Pérez-Nuñez
  • Manuel Sumillera
  • José A. Riancho
Original Research

Abstract

Osteoporosis causes important morbidity among elderly individuals. Fragility fractures, and especially hip fractures, have a particularly negative impact on the patients’ quality of life. The role of epigenetic mechanisms in the pathogenesis of many disorders is increasingly recognized, yet little is known about their role in non-malignant bone disorders such as osteoporosis. The aim of this study was to explore the expression of miRNAs in patients with osteoporotic hip fractures. Trabecular bone samples were obtained from the femoral heads of patients undergoing replacement surgery for osteoporotic hip fractures and non-fracture controls with hip osteoarthritis. Levels of 760 miRNA were analyzed by real-time PCR. Thirteen miRNAs showed nominally significant (p < 0.05) differences between both groups. Six miRNAs (miR-187, miR-193a-3p, miR-214, miR518f, miR-636, and miR-210) were selected for the replication stage. These miRNAs were individually analyzed in a larger group of 38 bone samples. At this stage, we confirmed statistically significant differences across groups for mir-187 and miR-518f. The median relative expression levels of miR-187 were 5.3-fold higher in the non-fracture group (p = 0.002). On the contrary, miR-518f was preferentially expressed in bones from osteoporotic patients (8.6-fold higher in fractures; p = 0.046). In this first hypothesis-free study of the bone microRNome we found two miRNAs, miR-187, and miR-518f, differentially regulated in osteoporotic bone. Further studies are needed to elucidate the mechanisms involved in the association of these miRNAs with fractures.

Keywords

MicroRNA Epigenetics Osteoporosis Fractures Osteoblasts 

Notes

Acknowledgments

We are grateful to Margarita Sánchez-Beato for scientific input. Supported by grants from ISCIII (PI09/539 and PI12/615), program partially funded by EU (FEDER).

Conflict of interest

Pablo Garmilla-Ezquerra, Carolina Sañudo, Jesús Delgado-Calle, María I. Perez-Nuñez, Manuel Sumillera, and José A. Riancho declare that they do not have conflicts of interest.

Human and Animal Rights and Informed Consent

The study was approved by the Institution’s Ethical Committee and informed consent was obtained from the participants.

Supplementary material

223_2014_9935_MOESM1_ESM.doc (532 kb)
Supplementary material 1 (DOC 532 kb)
223_2014_9935_MOESM2_ESM.doc (539 kb)
Supplementary material 2 (DOC 539 kb)

References

  1. 1.
    Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018CrossRefPubMedGoogle Scholar
  2. 2.
    Riancho JA, Zarrabeitia MT, Gonzalez-Macias J (2008) Genetics of osteoporosis. Aging Health 4:365–376CrossRefGoogle Scholar
  3. 3.
    Ralston SH (2010) Osteoporosis as an hereditary disease. Clin Rev Bone Miner Metab 8:68–76CrossRefGoogle Scholar
  4. 4.
    Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31:629–662CrossRefPubMedGoogle Scholar
  5. 5.
    Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, Gonzalez-Macias J, Kahonen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren O, Lorenc RS, Marc J, Mellstrom D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Lagboom PE, Tang NL, Urreizti R, Van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gomez C, Th PS, Reppe S, Rotter JI, Sigurdsson G, van Meurs JB, Verlaan D, Williams FM, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw KT, Lehtimaki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HA, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, Van Duijn CM, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AW, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Delgado-Calle J, Garmilla P, Riancho JA (2012) Do epigenetic marks govern bone mass and homeostasis? Curr Genomics 13:252–263CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Vrtacnik P, Marc J, Ostanek B (2014) Epigenetic mechanisms in bone. Clin Chem Lab Med 52:589–608CrossRefPubMedGoogle Scholar
  8. 8.
    Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95CrossRefPubMedGoogle Scholar
  9. 9.
    Erson AE, Petty EM (2008) MicroRNAs in development and disease. Clin Genet 74:296–306CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao X, Xu D, Li Y, Zhang J, Liu T, Ji Y, Wang J, Zhou G, Xie X (2014) MicroRNAs regulate bone metabolism. J Bone Miner Metab 32:221–231CrossRefPubMedGoogle Scholar
  11. 11.
    Singh SK, Pal BM, Girschick HJ, Bhadra U (2008) MicroRNAs–micro in size but macro in function. FEBS J 275:4929–4944CrossRefPubMedGoogle Scholar
  12. 12.
    Hernandez JL, Garcés CM, Sumillera M, Fernandez-Aldasoro EV, Garcia-Ibarbia C, Ortiz JA, Arozamena J, Alonso MA, Riancho JA (2008) Aromatase expression in osteoarthritic and osteoporotic bone. Arthritis Rheum 58:1696–1700CrossRefPubMedGoogle Scholar
  13. 13.
    Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583:2263–2268CrossRefPubMedGoogle Scholar
  14. 14.
    Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5:73–80CrossRefPubMedGoogle Scholar
  15. 15.
    Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibanez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50:477–489CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869CrossRefPubMedGoogle Scholar
  17. 17.
    Balemans W, Cleiren E, Siebers U, Horst J, Van Hul W (2005) A generalized skeletal hyperostosis in two siblings caused by a novel mutation in the SOST gene. Bone 36:943–947CrossRefPubMedGoogle Scholar
  18. 18.
    Balemans W, Van Hul W (2007) The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148:2622–2629CrossRefPubMedGoogle Scholar
  19. 19.
    Garcia-Ibarbia C, Delgado-Calle J, Casafont I, Velasco J, Arozamena J, Perez-Nunez MI, Alonso MA, Berciano MT, Ortiz F, Perez-Castrillon JL, Fernandez AF, Fraga MF, Zarrabeitia MT, Riancho JA (2013) Contribution of genetic and epigenetic mechanisms to Wnt pathway activity in prevalent skeletal disorders. Gene 532:165–172CrossRefPubMedGoogle Scholar
  20. 20.
    Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperini S, Mariotti B, De Luca M, Mirolo M, Cassatella MA, Locati M, Bazzoni F (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA 109:E3101–E3110CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR, Xiao P (2014) MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One 9:e97098CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Chen S, Yang L, Jie Q, Lin YS, Meng GL, Fan JZ, Zhang JK, Fan J, Luo ZJ, Liu J (2014) MicroRNA125b suppresses the proliferation and osteogenic differentiation of human bone marrowderived mesenchymal stem cells. Mol Med Rep 9:1820–1826PubMedGoogle Scholar
  23. 23.
    Ell B, Kang Y (2014) MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep 3:549CrossRefPubMedGoogle Scholar
  24. 24.
    Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukumoto S, Saito K, Nakamura T, Siomi H, Ito H, Arai Y, Shinomiya K, Takeda S (2009) A microRNA regulatory mechanism of osteoblast differentiation. P Natl Acad Sci USA 106:20794–20799Google Scholar
  25. 25.
    Krzeszinski JY, Wei W, Huynh H, Jin Z, Wang X, Chang TC, Xie XJ, He L, Mangala LS, Lopez-Berestein G, Sood AK, Mendell JT, Wan Y (2014) miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 512:431–435Google Scholar
  26. 26.
    Liu H, Sun Q, Wan C, Li L, Zhang L, Chen Z (2014) MicroRNA-338-3p regulates osteogenic differentiation of mouse bone marrow stromal stem cells by targeting Runx2 and Fgfr2. J Cell Physiol 229:1494–1502CrossRefPubMedGoogle Scholar
  27. 27.
    Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 23:287–295CrossRefPubMedGoogle Scholar
  28. 28.
    Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, Fukuda T, Maruyama M, Okuda A, Amemiya T, Kondoh Y, Tashiro H, Okazaki Y (2008) miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 368:267–272CrossRefPubMedGoogle Scholar
  29. 29.
    Wang S, Tang C, Zhang Q, Chen W (2014) Reduced miR-9 and miR-181a expression down-regulates Bim concentration and promote osteoclasts survival. Int J Clin Exp Pathol 7:2209–2218PubMedCentralPubMedGoogle Scholar
  30. 30.
    Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666–3677CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Wang X, Guo B, Li Q, Peng J, Yang Z, Wang A, Li D, Hou Z, Lv K, Kan G, Cao H, Wu H, Song J, Pan X, Sun Q, Ling S, Li Y, Zhu M, Zhang P, Peng S, Xie X, Tang T, Hong A, Bian Z, Bai Y, Lu A, Li Y, He F, Zhang G, Li Y (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100CrossRefPubMedGoogle Scholar
  32. 32.
    Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728CrossRefPubMedGoogle Scholar
  33. 33.
    Moayyeri A, Hsu YH, Karasik D, Estrada K, Xiao SM, Nielson C, Srikanth P, Giroux S, Wilson SG, Zheng HF, Smith AV, Pye SR, Leo PJ, Teumer A, Hwang JY, Ohlsson C, McGuigan F, Minster RL, Hayward C, Olmos JM, Lyytikainen LP, Lewis JR, Swart KM, Masi L, Oldmeadow C, Holliday EG, Cheng S, van Schoor NM, Harvey NC, Kruk M, del Greco MF, Igl W, Trummer O, Grigoriou E, Luben R, Liu CT, Zhou Y, Oei L, Medina-Gomez C, Zmuda J, Tranah G, Brown SJ, Williams FM, Soranzo N, Jakobsdottir J, Siggeirsdottir K, Holliday KL, Hannemann A, Go MJ, Garcia M, Polasek O, Laaksonen M, Zhu K, Enneman AW, McEvoy M, Peel R, Sham PC, Jaworski M, Johansson A, Hicks AA, Pludowski P, Scott R, Dhonukshe-Rutten RA, Kahonen M, Viikari JS, Sievanen H, Raitakari OT, Gonzalez-Macias J, Hernandez JL, Mellstrom D, Ljunggren O, Cho YS, Volker U, Nauck M, Homuth G, Volzke H, Haring R, Brown MA, McCloskey E, Nicholson GC, Eastell R, Eisman JA, Jones G, Reid IR, Dennison EM, Wark J, Boonen S, Vanderschueren D, Wu FC, Aspelund T, Richards JB, Bauer D, Hofman A, Khaw KT, Dedoussis G, Obermayer-Pietsch B, Gyllensten U, Pramstaller PP, Lorenc RS, Cooper C, Kung AW, Lips P, Alen M, Attia J, Brandi ML, de Groot LC, Lehtimaki T, Riancho JA, Campbell H, Liu Y, Harris TB, Akesson K, Karlsson M, Lee JY, Wallaschofski H, Duncan EL, O’Neill TW, Gudnason V, Spector TD, Rousseau F, Orwoll E, Cummings SR, Wareham NJ, Rivadeneira F, Uitterlinden AG, Prince RL, Kiel DP, Reeve J, Kaptoge SK (2014) Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium. Hum Mol Genet 23:3054–3068CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pablo Garmilla-Ezquerra
    • 1
  • Carolina Sañudo
    • 1
  • Jesús Delgado-Calle
    • 1
  • María I. Pérez-Nuñez
    • 2
  • Manuel Sumillera
    • 2
  • José A. Riancho
    • 1
  1. 1.Department of Medicine, Hospital U.M. Valdecilla, IDIVALUniversity of CantabriaSantanderSpain
  2. 2.Department of Traumatology and Orthopedic Surgery, Hospital U.M. ValdecillaUniversity of CantabriaSantanderSpain

Personalised recommendations