Advertisement

Calcified Tissue International

, Volume 96, Issue 1, pp 1–10 | Cite as

Osteocalcin: An Osteoblast-Derived Polypeptide Hormone that Modulates Whole Body Energy Metabolism

  • Tara C. Brennan-Speranza
  • Arthur D. Conigrave
Review

Abstract

Osteocalcin is a bone-specific protein that is regularly used in the clinical setting as a serum marker of bone turnover. Recent evidence indicates that osteocalcin plays a previously unsuspected role in the control of energy metabolism. Thus, osteocalcin-deficient mice have a profoundly deranged metabolic phenotype that includes insulin resistance, glucose intolerance and abnormal fat deposition. Additionally, osteocalcin administration in mice improves insulin sensitivity and decreases fat pad mass and serum triglyceride levels. The role of osteocalcin in human macronutrient metabolism is less clear but recent studies report positive correlations between serum osteocalcin levels and established indices of metabolic health. Herein, we review key physiological functions of osteocalcin, focussing on the roles of osteocalcin in the modulation of macronutrient metabolism, male reproductive function and foetal brain development. We consider the implications of these findings for the coordination of metabolism with development and fertility. We also consider evidence that a Class C G-protein-coupled receptor from a subgroup known to mediate nutrient-sensing acts as the osteocalcin receptor.

Keywords

Osteocalcin Glucose tolerance Energy metabolism 

Notes

Conflict of Interest

T.C. Brennan-Speranza, A.D. Conigrave declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

223_2014_9931_MOESM1_ESM.docx (76 kb)
Supplementary material 1 (DOCX 76 kb)

References

  1. 1.
    Karsenty G (1998) Transcriptional regulation of osteoblast differentiation during development. Front Biosci 3:834–837Google Scholar
  2. 2.
    Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci USA 72:3925–3929CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047PubMedGoogle Scholar
  5. 5.
    Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648CrossRefPubMedGoogle Scholar
  6. 6.
    Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452CrossRefPubMedGoogle Scholar
  7. 7.
    Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Dubois-Ferrière V, Brennan TC, Dayer R, Rizzoli R, Ammann P (2011) Calcitropic hormones and IGF-I are influenced by dietary protein. Endocrinology 152:1839–1847CrossRefPubMedGoogle Scholar
  9. 9.
    Rutter MM, Markoff E, Clayton L, Akeno N, Zhao G, Clemens TL, Chernausek SD (2005) Osteoblast-specific expression of insulin-like growth factor-1 in bone of transgenic mice induces insulin-like growth factor binding protein-5. Bone 36:224–231CrossRefPubMedGoogle Scholar
  10. 10.
    Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G (2012) Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50:568–575CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci 105:5266–5270CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL (1988) Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab 67:741–748CrossRefPubMedGoogle Scholar
  14. 14.
    Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ (1984) Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1:1091–1093CrossRefPubMedGoogle Scholar
  15. 15.
    Seibel MJ (2006) Biochemical markers of bone turnover part II: clinical applications in the management of osteoporosis. Clin Biochem Rev 27:123–138PubMedCentralPubMedGoogle Scholar
  16. 16.
    Lian J, Stewart C, Puchacz E, Mackowiak S, Shalhoub V, Collart D, Zambetti G, Stein G (1989) Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci USA 86:1143–1147CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196CrossRefPubMedGoogle Scholar
  18. 18.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207CrossRefPubMedGoogle Scholar
  19. 19.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317CrossRefPubMedGoogle Scholar
  20. 20.
    Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138:976–989CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Mauro LJ, Olmsted EA, Skrobacz BM, Mourey RJ, Davis AR, Dixon JE (1994) Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem 269:30659–30667PubMedGoogle Scholar
  22. 22.
    Brennan-Speranza TC, Henneicke H, Gasparini SJ, Blankenstein KI, Heinevetter U, Cogger VC, Svistounov D, Zhang Y, Cooney GJ, Buttgereit F, Dunstan CR, Gundberg C, Zhou H, Seibel MJ (2012) Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest 122:4172–4189CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Buitenhuis HC, Soute BAM, Vermeer C (1990) Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim Biophys Acta 1034:170–175CrossRefPubMedGoogle Scholar
  24. 24.
    Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y (2001) Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50:1126–1133CrossRefPubMedGoogle Scholar
  25. 25.
    Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946CrossRefPubMedGoogle Scholar
  26. 26.
    Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953CrossRefPubMedGoogle Scholar
  27. 27.
    Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 98:2005–2010CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Kajimura D, Lee HW, Riley Kyle RJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, DePinho RA, Guo EX, Mann JJ, Karsenty G (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Schafer AL, Sellmeyer DE, Schwartz AV, Rosen CJ, Vittinghoff E, Palermo L, Bilezikian JP, Shoback DM, Black DM (2011) Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study). J Clin Endocrinol Metab 96:E1982–E1989CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Bozec A, Bakiri L, Jimenez M, Rosen ED, Catalá-Lehnen P, Schinke T, Schett G, Amling M, Wagner EF (2013) Osteoblast-specific expression of Fra-2/AP-1 controls Adiponectin/Osteocalcin expression and affects metabolism. J Cell Sci 126(23):5432–5440Google Scholar
  32. 32.
    Ituarte EA, Halstead LR, Iida-Klein A, Ituarte HG, Hahn TJ (1989) Glucose transport system in UMR-106-01 osteoblastic osteosarcoma cells: regulation by insulin. Calcif Tissue Int 45:27–33CrossRefPubMedGoogle Scholar
  33. 33.
    Kream BE, Smith MD, Canalis E, Raisz LG (1985) Characterization of the effect of insulin on collagen synthesis in fetal rat bone. Endocrinology 116:296–302CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang W, Shen X, Wan C, Zhao Q, Zhang L, Zhou Q, Deng L (2012) Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 30:297–302CrossRefPubMedGoogle Scholar
  35. 35.
    Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere M-C, Aja S, Hussain MA, Brüning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321CrossRefPubMedGoogle Scholar
  37. 37.
    Medema RH, Kops GJPL, Bos JL, Burgering BMT (2000) AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782–787CrossRefPubMedGoogle Scholar
  38. 38.
    Kode A, Mosialou I, Silva BC, Joshi S, Ferron M, Rached MT, Kousteni S (2012) FoxO1 protein cooperates with ATF4 protein in osteoblasts to control glucose homeostasis. J Biol Chem 287:8757–8768CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell Factor- to forkhead box O-mediated transcription. J Biol Chem 282:27298–27305CrossRefPubMedGoogle Scholar
  40. 40.
    Iyer S, Ambrogini E, Bartell SM, Han L, Roberson PK, de Cabo R, Jilka RL, Weinstein RS, O’Brien CA, Manolagas SC, Almeida M (2013) FOXOs attenuate bone formation by suppressing Wnt signaling. J Clin Invest 123:3409–3419CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Poser JW, Price PA (1979) A method for decarboxylation of gamma-carboxyglutamic acid in proteins. properties of the decarboxylated gamma-carboxyglutamic acid protein from calf bone. J Biol Chem 254:431–436PubMedGoogle Scholar
  42. 42.
    Lacombe J, Karsenty G, Ferron M (2013) In vivo analysis of the contribution of bone resorption to the control of glucose metabolism in mice. Mol Metabol 2:498–504CrossRefGoogle Scholar
  43. 43.
    Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13CrossRefPubMedGoogle Scholar
  44. 44.
    Levinger I, Jerums G, Stepto NK, Parker L, Serpiello FR, McConell GK, Anderson M, Hare DL, Byrnes E, Ebeling PR, Seeman E (2014) The effect of acute exercise on undercarboxylated osteocalcin and insulin sensitivity in obese men. J Bone Miner Res. doi: 10.1002/jbmr.2285
  45. 45.
    Hill HS, Grams J, Walton RG, Liu J, Moellering DR, Garvey WT (2014) Carboxylated and uncarboxylated forms of osteocalcin directly modulate the glucose transport system and inflammation in adipocytes. Horm Metab Res 46:341–347CrossRefPubMedGoogle Scholar
  46. 46.
    Barnes PJ (2006) How corticosteroids control inflammation: quintiles prize lecture 2005. Br J Pharmacol 148:245–254CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Buttgereit F, Burmester GR, Straub RH, Seibel MJ, Zhou H (2011) Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum 63:1–9CrossRefPubMedGoogle Scholar
  48. 48.
    Buttgereit F, Doering G, Schaeffler A, Witte S, Sierakowski S, Gromnica-Ihle E, Jeka S, Krueger K, Szechinski J, Alten R (2008) Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet 371:205–214CrossRefPubMedGoogle Scholar
  49. 49.
    Gounarides JS, Korach-André M, Killary K, Argentieri G, Turner O, Laurent D (2008) Effect of dexamethasone on glucose tolerance and fat metabolism in a diet-induced obesity mouse model. Endocrinology 149:758–766CrossRefPubMedGoogle Scholar
  50. 50.
    de Oliveira C, de Mattos A, Biz C, Oyama L, Ribeiro E, Oller do Nascimento C (2011) High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations. Lipids Health Dis 10:11CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Henneicke H, Herrmann M, Kalak R, Brennan-Speranza TC, Heinevetter U, Bertollo N, Day RE, Huscher D, Buttgereit F, Dunstan CR, Seibel MJ, Zhou H (2011) Corticosterone Selectively Targets endo-cortical surfaces by an osteoblast-dependent mechanism. Bone 49:733–742CrossRefPubMedGoogle Scholar
  52. 52.
    Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, Srinivas P, Chamouni A, Lugani F, Lejeune H, Kumar TR, Plotton I, Karsenty G (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123:2421–2433CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith Charles E, Hermo L, Suarez S, Roth Bryan L, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Pi M, Chen L, Huang MZ, Zhu W, Ringhofer B, Luo J, Christenson L, Li B, Zhang J, Jackson PD, Faber P, Brunden KR, Harrington JJ, Quarles LD (2008) GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 3:e3858CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Conigrave AD, Hampson DR (2010) Broad-spectrum amino acid-sensing class C G-protein coupled receptors: molecular mechanisms, physiological significance and options for drug development. Pharmacol Ther 127:252–260CrossRefPubMedGoogle Scholar
  56. 56.
    Bouschet T, Martin S, Henley JM (2012) Regulation of calcium sensing receptor trafficking by RAMPs. Adv Exp Med Biol 744:39–48CrossRefPubMedGoogle Scholar
  57. 57.
    Conigrave AD, Quinn SJ, Brown EM (2000) L-Amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci 97:4814–4819CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ, Quarles LD (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280:40201–40209CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Pi M, Wu Y, Quarles LD (2011) GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res 26:1680–1683CrossRefPubMedGoogle Scholar
  60. 60.
    Jacobsen SE, Norskov-Lauritsen L, Thomsen AR, Smajilovic S, Wellendorph P, Larsson NH, Lehmann A, Bhatia VK, Brauner-Osborne H (2013) Delineation of the GPRC6A receptor signaling pathways using a mammalian cell line stably expressing the receptor. J Pharmacol Exp Ther 347:298–309CrossRefPubMedGoogle Scholar
  61. 61.
    Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes β-cell proliferation during development and adulthood through GPRC6A. Diabetes 63:1021–1031CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Wellendorph P, Johansen LD, Jensen AA, Casanova E, Gassmann M, Deprez P, Clément-Lacroix P, Bettler B, Bräuner-Osborne H (2009) No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. J Mol Endocrinol 42:215–223CrossRefPubMedGoogle Scholar
  63. 63.
    Smajilovic S, Clemmensen C, Johansen L, Wellendorph P, Holst J, Thams P, Ogo E, Bräuner-Osborne H (2013) The l-α-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in l-arginine-induced insulin release. Amino Acids 44:383–390CrossRefPubMedGoogle Scholar
  64. 64.
    Clemmensen C, Smajilovic S, Madsen AN, Klein AB, Holst B, Bräuner-Osborne H (2013) Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice. J Endocrinol 217:151–160CrossRefPubMedGoogle Scholar
  65. 65.
    Clemmensen C, Pehmoller C, Klein AB, Ratner C, Wojtaszewski JF, Brauner-Osborne H (2013) Enhanced voluntary wheel running in GPRC6A receptor knockout mice. Physiol Behav 118:144–151CrossRefPubMedGoogle Scholar
  66. 66.
    Desjardins C (1978) Endocrine regulation of reproductive development and function in the male. J Anim Sci 47(Suppl 2):56–79PubMedGoogle Scholar
  67. 67.
    Dorrington JH, Armstrong DT (1979) Effects of FSH on gonadal functions. Recent Prog Horm Res 35:301–342PubMedGoogle Scholar
  68. 68.
    Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, Huang YY, Lee H, Srinivas P, Gao XB, Suyama S, Langer T, Mann JJ, Horvath TL, Bonnin A, Karsenty G (2013) Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 155:228–241CrossRefPubMedGoogle Scholar
  69. 69.
    Kapustin AN, Shanahan CM (2011) Osteocalcin: a novel vascular metabolic and osteoinductive factor? Arterioscler Thromb Vasc Biol 31:2169–2171CrossRefPubMedGoogle Scholar
  70. 70.
    Shanahan CM, Cary NRB, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME (1999) Medial localization of mineralization-regulating proteins in association with Mönckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176CrossRefPubMedGoogle Scholar
  71. 71.
    Proudfoot D, Davies JD, Skepper JN, Weissberg PL, Shanahan CM (2002) Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation 106:3044–3050CrossRefPubMedGoogle Scholar
  72. 72.
    Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM (2003) Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489–494CrossRefPubMedGoogle Scholar
  73. 73.
    Idelevich A, Rais Y, Monsonego-Ornan E (2011) Bone Gla protein increases HIF-1α-dependent glucose metabolism and induces cartilage and vascular calcification. Arterioscl Thromb Vasc Biol 31:e55–e71CrossRefPubMedGoogle Scholar
  74. 74.
    Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, Panteleyev AA, Okkenhaug K, Cantrell DA (2012) PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 209:2441–2453CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Araldi E, Schipani E (2010) Hypoxia, HIFs and bone development. Bone 47:190–196CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Kanazawa I, Yamaguchi T, Tada Y, Yamauchi M, Yano S, Sugimoto T (2011) Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone 48:720–725CrossRefPubMedGoogle Scholar
  77. 77.
    Inaba M, Nishizawa Y, Mita K, Kumeda Y, Emoto M, Kawagishi T, Ishimura E, Nakatsuka K, Shioi A, Morii H (1999) Poor glycemic control impairs the response of biochemical parameters of bone formation and resorption to exogenous 1,25-dihydroxyvitamin D3 in patients with type 2 diabetes. Osteoporos Int 9:525–531CrossRefPubMedGoogle Scholar
  78. 78.
    Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94:827–832CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U, Mellstrom D (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:785–791CrossRefPubMedGoogle Scholar
  80. 80.
    Gravenstein KS, Napora JK, Short RG, Ramachandran R, Carlson OD, Metter EJ, Ferrucci L, Egan JM, Chia CW (2011) Cross-sectional evidence of a signaling pathway from bone homeostasis to glucose metabolism. J Clin Endocrinol Metab 96:E884–E890CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Sayinalp S, Gedik O, Koray Z (1995) Increasing serum osteocalcin after glycemic control in diabetic men. Calcif Tissue Int 57:422–425CrossRefPubMedGoogle Scholar
  82. 82.
    Lu C, Ivaska KK, Alen M, Wang Q, Tormakangas T, Xu L, Wiklund P, Mikkola TM, Pekkala S, Tian H, Vaananen HK, Cheng S (2012) Serum osteocalcin is not associated with glucose but is inversely associated with leptin across generations of nondiabetic women. J Clin Endocrinol Metab 97:4106–4114CrossRefPubMedGoogle Scholar
  83. 83.
    Osorio J (2012) Metabolism: no role for osteocalcin in glucose metabolism-challenging a paradigm? Nat Rev Endocrinol 8:626CrossRefPubMedGoogle Scholar
  84. 84.
    von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U (2004) Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism 53:918–921CrossRefGoogle Scholar
  85. 85.
    Garcia-Martin A, Cortes-Berdonces M, Luque-Fernandez I, Rozas-Moreno P, Quesada-Charneco M, Munoz-Torres M (2011) Osteocalcin as a marker of metabolic risk in healthy postmenopausal women. Menopause 18:537–541CrossRefPubMedGoogle Scholar
  86. 86.
    Yeap BB, Chubb SA, Flicker L, McCaul KA, Ebeling PR, Beilby JP, Norman PE (2010) Reduced serum total osteocalcin is associated with metabolic syndrome in older men via waist circumference, hyperglycemia, and triglyceride levels. Eur J Endocrinol 163:265–272CrossRefPubMedGoogle Scholar
  87. 87.
    Levinger I, Zebaze R, Jerums G, Hare DL, Selig S, Seeman E (2011) The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporos Int 22:1621–1626CrossRefPubMedGoogle Scholar
  88. 88.
    Schafer AL, Sellmeyer DE, Schwartz AV, Rosen CJ, Vittinghoff E, Palermo L, Bilezikian JP, Shoback DM, Black DM (2011) Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study). J Clin Endocrinol Metab 96:E1982–E1989CrossRefPubMedCentralPubMedGoogle Scholar
  89. 89.
    Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2011) Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22:187–194CrossRefPubMedGoogle Scholar
  90. 90.
    Pollock NK, Bernard PJ, Gower BA, Gundberg CM, Wenger K, Misra S, Bassali RW, Davis CL (2011) Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with beta-cell function. J Clin Endocrinol Metab 96:E1092–E1099CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Iki M, Tamaki J, Fujita Y, Kouda K, Yura A, Kadowaki E, Sato Y, Moon JS, Tomioka K, Okamoto N, Kurumatani N (2012) Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int 23:761–770CrossRefPubMedGoogle Scholar
  92. 92.
    Hwang YC, Jeong IK, Ahn KJ, Chung HY (2009) The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metabol Res Rev 25:768–772CrossRefGoogle Scholar
  93. 93.
    Confavreux CB, Borel O, Lee F, Vaz G, Guyard M, Fadat C, Carlier MC, Chapurlat R, Karsenty G (2012) Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int 23:1645–1650CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tara C. Brennan-Speranza
    • 1
  • Arthur D. Conigrave
    • 2
  1. 1.Discipline of Physiology & Bosch Institute, School of Medical SciencesUniversity of SydneySydneyAustralia
  2. 2.School of Molecular BioscienceUniversity of SydneySydneyAustralia

Personalised recommendations