Calcified Tissue International

, Volume 96, Issue 1, pp 65–72 | Cite as

Primary Cilia Exist in a Small Fraction of Cells in Trabecular Bone and Marrow

  • Thomas R. Coughlin
  • Muriel Voisin
  • Mitchell B. Schaffler
  • Glen L. Niebur
  • Laoise M. McNamara
Original Research


Primary cilia are potent mechanical and chemical sensory organelles in cells of bone lineage in tissue culture. Cell culture experiments suggest that primary cilia sense fluid flow and this stimulus is translated through biochemical signaling into an osteogenic response in bone cells. Moreover, in vivo, primary cilia knockout in bone cells attenuates bone formation in response to loading. However, understanding the role of the primary cilium in bone mechanotransduction requires knowledge of its incidence and location in vivo. We used immunohistochemistry to quantify the number of cells with primary cilia within the trabecular bone tissue and the enclosed marrow of ovine cervical vertebrae. Primary cilia were identified in osteocytes, bone lining cells, and in cells within the marrow, but were present in only a small fraction of cells. Approximately 4 % of osteocytes and 4.6 % of bone lining cells expressed primary cilia. Within the marrow space, only approximately 1 % of cells presented primary cilia. The low incidence of primary cilia may indicate that cilia either function as mechanosensors in a selected number of cells, function in concert with other mechanosensing mechanisms, or that the role of primary cilia in mechanosensing is secondary to its role in chemosensing or cellular attachment.


Mechanobiology Mechanotransduction Primary cilia Marrow Osteocyte MSCs 



This research was supported by grants from Science Foundation Ireland 07/EN/E015B Travel Fellowship T.R.C., European Research Council (ERC) Grant No. 258992 (BONEMECHBIO) L.McN. and M.V., NSF CMMI-110207 T.R.C. and G.L.N.

Conflict of Interest

Thomas R. Coughlin, Muriel Voisin, Mitchell B. Schaffler, Glen L. Niebur, and Laoise M. McNamara have no conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Owen M (1980) The origin of bone cells in the postnatal organism. Arthritis Rheum 23:1073–1080CrossRefPubMedGoogle Scholar
  2. 2.
    Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36:1978–1991CrossRefPubMedGoogle Scholar
  3. 3.
    Weiss L (1976) The hematopoietic microenvironment of the bone marrow: an ultrastructural study of the stroma in rats. Anat Rec 186:161–184CrossRefPubMedGoogle Scholar
  4. 4.
    Birmingham E, Grogan JA, Niebur GL, McNamara LM, McHugh PE (2013) Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann Biomed Eng 41:814–826CrossRefPubMedGoogle Scholar
  5. 5.
    Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–27PubMedGoogle Scholar
  6. 6.
    Knothe Tate ML (2003) “Whither flows the fluid in bone?” An osteocyte’s perspective. J Biomech 36:1409–1424CrossRefPubMedGoogle Scholar
  7. 7.
    Kapur S, Baylink DJ, Lau KHW (2002) Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32:241–251CrossRefGoogle Scholar
  8. 8.
    McAllister T (2000) Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. Biochem Bioph Res Co 270:643–648CrossRefGoogle Scholar
  9. 9.
    Li J, Rose E, Frances D, Sun Y, You L (2012) Effect of oscillating fluid flow stimulation on osteocyte mRNA expression. J Biomech 45:247–251CrossRefPubMedGoogle Scholar
  10. 10.
    Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD (2001) Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization. J Appl Physiol 90:1849–1854PubMedGoogle Scholar
  11. 11.
    Klein-Nulend J, Semeins CM, Burger EH (1996) Prostaglandin mediated modulation of transforming growth factor-beta metabolism in primary mouse osteoblastic cells in vitro. J Cell Physiol 168:1–7CrossRefPubMedGoogle Scholar
  12. 12.
    Coughlin TR, Niebur GL (2012) Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J Biomech 45:2222–2229CrossRefPubMedGoogle Scholar
  13. 13.
    Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Ziambaras K, Lecanda F, Steinberg TH, Civitelli R (1998) Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 13:218–228CrossRefPubMedGoogle Scholar
  15. 15.
    Litzenberger JB, Kim JB, Tummala P, Jacobs CR (2010) Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int 86:325–332CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 104:13325–13330CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR (2012) Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 30:2561–2570CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81CrossRefPubMedGoogle Scholar
  19. 19.
    Sorokin S (1962) Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol 15:363–377CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Kobayashi T, Dynlacht BD (2011) Regulating the transition from centriole to basal body. J Cell Biol 193:435–444CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137:32–45CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272:F132–F138PubMedGoogle Scholar
  23. 23.
    Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79CrossRefPubMedGoogle Scholar
  24. 24.
    Hoey DA, Kelly DJ, Jacobs CR (2011) A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells. Biochem Biophys Res Commun 412:182–187CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, Helms JA, Stearns T, Jacobs CR (2012) Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS ONE 7:e33368CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, Quarles LD (2012) Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci 125:1945–1957CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Bodle JC, Rubenstein CD, Phillips ME, Bernacki SH, Qi J, Banes AJ, Loboa EG (2013) Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis. PLoS ONE 8:e62554CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Whitfield JF (2008) The solitary (primary) cilium—a mechanosensory toggle switch in bone and cartilage cells. Cell Signal 20:1019–1024CrossRefPubMedGoogle Scholar
  29. 29.
    Gardner K, Arnoczky SP, Lavagnino M (2011) Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ. J Orthop Res 29:582–587CrossRefPubMedGoogle Scholar
  30. 30.
    McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, Poole CA (2010) Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int 34:441–446CrossRefPubMedGoogle Scholar
  31. 31.
    Tonna EA, Lampen NM (1972) Electron microscopy of aging skeletal cells. I. Centrioles and solitary cilia. J Gerontol 27:316–324CrossRefPubMedGoogle Scholar
  32. 32.
    Uzbekov RE, Maurel DB, Aveline PC, Pallu S, Benhamou CL, Rochefort GY (2012) Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. Microsc Microanal 18:1430–1441CrossRefPubMedGoogle Scholar
  33. 33.
    Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520CrossRefPubMedGoogle Scholar
  34. 34.
    Tenenbaum HC (1992) Cellular origins and theories of differentiation of bone-forming cells. In: Hall BK (ed) In Bone: The osteoblast and osteocyte. CRC Press, Boca Raton, pp 41–69Google Scholar
  35. 35.
    Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181:1232–1244CrossRefPubMedGoogle Scholar
  36. 36.
    Weiss L, Geduldig U (1991) Barrier cells: stromal regulation of hematopoiesis and blood cell release in normal and stressed murine bone marrow. Blood 78:975–990PubMedGoogle Scholar
  37. 37.
    Turner CH, Owan I, Alvey T, Hulman J, Hock JM (1998) Recruitment and proliferative responses of osteoblasts after mechanical loading in vivo determined using sustained-release bromodeoxyuridine. Bone 22:463–469CrossRefPubMedGoogle Scholar
  38. 38.
    Tummala P, Arnsdorf EJ, Jacobs CR (2010) The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment. Cell Mol Bioeng 3:207–212CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Fritton JC, Myers ER, Wright TM, van der Meulen MC (2005) Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone 36:1030–1038CrossRefPubMedGoogle Scholar
  40. 40.
    Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27–35CrossRefPubMedGoogle Scholar
  41. 41.
    Poole T, Stayner C, McGlashan SR, Parker K, Wiles A, Jennings M, Jensen CG, Johnstone AC, Walker RJ, Eccles MR (2012) Primary cilia defects in the polycystic kidneys from an ovine model of Meckel Gruber syndrome. In: First International Cilia in Development and Disease Scientific Conference. LondonGoogle Scholar
  42. 42.
    Poole CA, Zhang ZJ, Ross JM (2001) The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J Anat 199:393–405CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB (2009) Attachment of osteocyte cell processes to the bone matrix. Anat Rec (Hoboken) 292:355–363CrossRefGoogle Scholar
  45. 45.
    Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 20:182–187CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thomas R. Coughlin
    • 1
  • Muriel Voisin
    • 2
  • Mitchell B. Schaffler
    • 3
  • Glen L. Niebur
    • 1
  • Laoise M. McNamara
    • 2
  1. 1.Tissue Mechanics Laboratory, Bioengineering Graduate ProgramUniversity of Notre DameNotre DameUSA
  2. 2.Department of Mechanical and Biomedical EngineeringNational University of Ireland, GalwayGalwayIreland
  3. 3.Department of Biomedical Engineering, Grove School of EngineeringCity College of New YorkNew YorkUSA

Personalised recommendations