Calcified Tissue International

, Volume 95, Issue 4, pp 323–331 | Cite as

Targeted Sequencing of a Pediatric Metabolic Bone Gene Panel Using a Desktop Semiconductor Next-Generation Sequencer

  • Frank Rauch
  • Liljana Lalic
  • Francis H. Glorieux
  • Pierre Moffatt
  • Peter Roughley
Original Research

Abstract

Metabolic bone disorders in children frequently are heritable, but the expanding number of genes associated with these conditions makes it difficult to perform molecular diagnosis. In the present study, we therefore evaluated a semiconductor (SC)-based sequencing system for this purpose. A total of 65 DNA samples were analyzed comprising 24 samples from patients with 27 known pathogenic mutations, 6 samples from patients with prior negative Sanger sequencing, and 35 consecutive samples from patients with suspected heritable metabolic bone disorders who had not had prior molecular diagnosis. In the samples with known pathogenic mutations, 26 of 27 mutations were identified by SC sequencing. All single nucleotide variants were correctly identified, but a 7-nucleotide duplication in CYP27B1 was not detected. SC sequencing revealed two pathogenic mutations in the six samples where prior Sanger sequencing had failed to identify a mutation. Finally, pathogenic mutations were found in 27 samples of patients with unknown mutation status (15 in COL1A1, 9 in COL1A2, 1 in LEPRE1, 1 in LRP5, 1 in PHEX). Subsequent Sanger sequencing confirmed the mutations in all 27 samples. In conclusion, we found that SC sequencing is suitable for the diagnosis of heritable metabolic bone disorders in children.

Keywords

Bone mineral density Fractures Juvenile osteoporosis Osteogenesis imperfecta Rickets Sequencing 

Notes

Acknowledgments

We thank Ghalib Bardai for assistance with sequencing data analysis and Mark Lepik for preparation of the figures. This study was supported by the Shriners of North America and the Fonds de recherche Québec - Santé.

Conflict of interests

Frank Rauch received support from the Chercheur-Boursier Clinicien program of the Fonds de Recherche du Québec – Santé and has received consultancy fees from Genzyme Inc and Alexion Inc. Francis H Glorieux has received consultancy fees from Novartis Inc., Amgen Inc. and Alexion Inc. Liljana Lalic, Pierre Moffatt, and Peter Roughley declare no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from study participants or the legal guardians.

Supplementary material

223_2014_9897_MOESM1_ESM.pdf (98 kb)
Supplementary material 1 (PDF 98 kb)

References

  1. 1.
    Marini JC, Blissett AR (2013) New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab 98:3095–3103PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ruppe MD, Brosnan PG, Au KS, Tran PX, Dominguez BW, Northrup H (2011) Mutational analysis of PHEX, FGF23 and DMP1 in a cohort of patients with hypophosphatemic rickets. Clin Endocrinol (Oxf) 74:312–318CrossRefGoogle Scholar
  4. 4.
    Malloy PJ, Feldman D (2010) Genetic disorders and defects in vitamin D action. Endocrinol Metab Clin N Am 39:333–346CrossRefGoogle Scholar
  5. 5.
    Bollerslev J, Henriksen K, Nielsen MF, Brixen K, Van Hul W (2013) Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur J Endocrinol 169:R39–R57PubMedCrossRefGoogle Scholar
  6. 6.
    Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352PubMedCrossRefGoogle Scholar
  7. 7.
    Merriman B, Rothberg JM (2012) Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 33:3397–3417PubMedCrossRefGoogle Scholar
  8. 8.
    Abou Tayoun AN, Tunkey CD, Pugh TJ, Ross T, Shah M, Lee CC, Harkins TT, Wells WA, Tafe LJ, Amos CI, Tsongalis GJ (2013) A comprehensive assay for CFTR mutational analysis using next-generation sequencing. Clin Chem 59:1481–1488PubMedCrossRefGoogle Scholar
  9. 9.
    Gomez J, Reguero JR, Moris C, Alvarez V, Coto E (2014) Non optical semi-conductor next generation sequencing of the main cardiac QT-interval duration genes in pooled DNA samples. J Cardiovasc Transl Res 7:133–137PubMedCrossRefGoogle Scholar
  10. 10.
    Tarabeux J, Zeitouni B, Moncoutier V, Tenreiro H, Abidallah K, Lair S, Legoix-Ne P, Leroy Q, Rouleau E, Golmard L, Barillot E, Stern MH, Rio-Frio T, Stoppa-Lyonnet D, Houdayer C (2014) Streamlined ion torrent PGM-based diagnostics: BRCA1 and BRCA2 genes as a model. Eur J Hum Genet 22:535–541PubMedCrossRefGoogle Scholar
  11. 11.
    Beck J, Pittman A, Adamson G, Campbell T, Kenny J, Houlden H, Rohrer JD, de Silva R, Shoai M, Uphill J, Poulter M, Hardy J, Mummery CJ, Warren JD, Schott JM, Fox NC, Rossor MN, Collinge J, Mead S (2014) Validation of next-generation sequencing technologies in genetic diagnosis of dementia. Neurobiol Aging 35:261–265PubMedCrossRefGoogle Scholar
  12. 12.
    Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385PubMedCrossRefGoogle Scholar
  13. 13.
    Rauch F, Lalic L, Roughley P, Glorieux FH (2010) Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res 25:1367–1374PubMedGoogle Scholar
  14. 14.
    Edouard T, Alos N, Chabot G, Roughley P, Glorieux FH, Rauch F (2011) Short- and long-term outcome of patients with pseudo-vitamin d deficiency rickets treated with calcitriol. J Clin Endocrinol Metab 96:82–89PubMedCrossRefGoogle Scholar
  15. 15.
    Cheung M, Roschger P, Klaushofer K, Veilleux LN, Roughley P, Glorieux FH, Rauch F (2013) Cortical and trabecular bone density in x-linked hypophosphatemic rickets. J Clin Endocrinol Metab 98:E954–E961PubMedCrossRefGoogle Scholar
  16. 16.
    Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304PubMedCrossRefGoogle Scholar
  17. 17.
    van Dijk FS, Byers PH, Dalgleish R, Malfait F, Maugeri A, Rohrbach M, Symoens S, Sistermans EA, Pals G (2012) EMQN best practice guidelines for the laboratory diagnosis of osteogenesis imperfecta. Eur J Hum Genet 20:11–19PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110–121PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081PubMedCrossRefGoogle Scholar
  20. 20.
    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109:121–124CrossRefGoogle Scholar
  22. 22.
    Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB (2005) Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 20:783–789PubMedCrossRefGoogle Scholar
  23. 23.
    Korvala J, Juppner H, Makitie O, Sochett E, Schnabel D, Mora S, Bartels CF, Warman ML, Deraska D, Cole WG, Hartikka H, Ala-Kokko L, Mannikko M (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 13:26PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kim CJ, Kaplan LE, Perwad F, Huang N, Sharma A, Choi Y, Miller WL, Portale AA (2007) Vitamin D 1{alpha}-hydroxylase gene mutations in patients with 1{alpha}-hydroxylase deficiency. J Clin Endocrinol Metab 92:3177–3182PubMedCrossRefGoogle Scholar
  25. 25.
    Wang JT, Lin CJ, Burridge SM, Fu GK, Labuda M, Portale AA, Miller WL (1998) Genetics of vitamin D 1alpha-hydroxylase deficiency in 17 families. Am J Hum Genet 63:1694–1702PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    van Dijk FS, Zillikens MC, Micha D, Riessland M, Marcelis CL, de Die-Smulders CE, Milbradt J, Franken AA, Harsevoort AJ, Lichtenbelt KD, Pruijs HE, Rubio-Gozalbo ME, Zwertbroek R, Moutaouakil Y, Egthuijsen J, Hammerschmidt M, Bijman R, Semeins CM, Bakker AD, Everts V, Klein-Nulend J, Campos-Obando N, Hofman A, te Meerman GJ, Verkerk AJ, Uitterlinden AG, Maugeri A, Sistermans EA, Waisfisz Q, Meijers-Heijboer H, Wirth B, Simon ME, Pals G (2013) PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med 369:1529–1536PubMedCrossRefGoogle Scholar
  27. 27.
    Fahiminiya S, Majewski J, Al-Jallad H, Moffatt P, Mort J, Glorieux FH, Roschger P, Klaushofer K, Rauch F (2014) Osteoporosis caused by mutations in PLS3—clinical and bone tissue characteristics. J Bone Miner Res 29:1805–1814Google Scholar
  28. 28.
    Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH, Rauch F (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50:345–348PubMedCrossRefGoogle Scholar
  29. 29.
    Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grunhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparros-Martin JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schonau E, Ruiz-Perez VL, Mundlos S, Amling M, Kornak U, Marini J, Wollnik B (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92:565–574PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92:590–597PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, Nieminen-Pihala V, Aronen M, Laine T, Kroger H, Cole WG, Lehesjoki AE, Nevarez L, Krakow D, Curry CJ, Cohn DH, Gibbs RA, Lee BH, Makitie O (2013) WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med 368:1809–1816PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Frank Rauch
    • 1
  • Liljana Lalic
    • 1
  • Francis H. Glorieux
    • 1
  • Pierre Moffatt
    • 1
  • Peter Roughley
    • 1
  1. 1.Shriners Hospital for Children and McGill UniversityMontrealCanada

Personalised recommendations