Calcified Tissue International

, Volume 95, Issue 2, pp 125–131

Reduced Tissue-Level Stiffness and Mineralization in Osteoporotic Cancellous Bone

  • Grace Kim
  • Jacqueline H. Cole
  • Adele L. Boskey
  • Shefford P. Baker
  • Marjolein C. H. van der Meulen
Original Research

Abstract

Osteoporosis alters bone mass and composition ultimately increasing the fragility of primarily cancellous skeletal sites; however, effects of osteoporosis on tissue-level mechanical properties of cancellous bone are unknown. Dual-energy X-ray absorptiometry (DXA) scans are the clinical standard for diagnosing osteoporosis though changes in cancellous bone mass and mineralization are difficult to separate using this method. The goal of this study was to investigate possible difference in tissue-level properties with osteoporosis as defined by donor T scores. Spine segments from Caucasian female cadavers (58–92 years) were used. A T score for each donor was calculated from DXA scans to determine osteoporotic status. Tissue-level composition and mechanical properties of vertebrae adjacent to the scan region were measured using nanoindentation and Raman spectroscopy. Based on T scores, six samples were in the Osteoporotic group (58–74 years) and four samples were in the Not Osteoporotic group (65–92 years). The indentation modulus and mineral to matrix ratio (mineral:matrix) were lower in the Osteoporotic group than the Not Osteoporotic group. Mineral:matrix ratio decreased with age (r2 = 0.35, p = 0.05), and the indentation modulus increased with areal bone mineral density (r2 = 0.41, p = 0.04). This study is the first to examine cancellous bone composition and mechanical properties from a fracture prone location with osteoporosis. We found differences in tissue composition and mechanical properties with osteoporosis that could contribute to increased fragility in addition to changes in trabecular architecture and bone volume.

Keywords

Nanoindentation Raman spectroscopy Osteoporosis Human trabecular bone 

References

  1. 1.
    Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454–462PubMedCrossRefGoogle Scholar
  2. 2.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRefGoogle Scholar
  3. 3.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRefGoogle Scholar
  4. 4.
    Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle M-F, Audran M (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19PubMedCrossRefGoogle Scholar
  5. 5.
    Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL (2012) Fourier transformed infra-red imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naïve fracture cases compared to fracture-free controls. J Bone Miner ResGoogle Scholar
  6. 6.
    Miller PD, Siris ES, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Chen YT, Berger ML, Santora AC, Sherwood LM (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 17:2222–2230PubMedCrossRefGoogle Scholar
  7. 7.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24:1565–1571PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694PubMedCrossRefGoogle Scholar
  10. 10.
    Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high-and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    McCreadie BR, Morris MD, Chen T-C, Sudhaker Rao D, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195PubMedCrossRefGoogle Scholar
  12. 12.
    Busa B, Miller LM, Rubin CT, Qin YX, Judex S (2005) Rapid establishment of chemical and mechanical properties during lamellar bone formation. Calcif Tissue Int 77:386–394PubMedCrossRefGoogle Scholar
  13. 13.
    Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045PubMedCrossRefGoogle Scholar
  14. 14.
    Donnelly E, Chen D, Boskey AL, Baker SP, van der Meulen MCH (2010) Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int 87:450–460PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MCH (2011) Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech 44:277–284PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kim G, Boskey AL, Baker SP, van der Meulen MCH (2012) Improved prediction of rat cortical bone mechanical behavior using composite beam theory to integrate tissue level properties. J Biomech 45:2784–2790PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wang X, Sudhaker Rao D, Ajdelsztajn L, Ciarelli TE, Lavernia EJ, Fyhrie DP (2008) Human iliac crest cancellous bone elastic modulus and hardness differ with bone formation rate per bone surface but not by existence of prevalent vertebral fracture. J Biomed Mater Res Part B 85B:68–77CrossRefGoogle Scholar
  18. 18.
    Polly B, Yuya P, Akhter M, Recker R, Turner J (2012) Intrinsic material properties of trabecular bone by nanoindentation testing of biopsies taken from healthy women before and after menopause. Calcif Tissue Int 90:286–293PubMedCrossRefGoogle Scholar
  19. 19.
    Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedCrossRefGoogle Scholar
  20. 20.
    Donnelly E, Baker SP, Boskey AL, van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res Part A 77:426–435CrossRefGoogle Scholar
  21. 21.
    Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  22. 22.
    Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259PubMedCrossRefGoogle Scholar
  23. 23.
    Timlin JA, Carden A, Morris MD, Bonadio JF, Hoffler CE II, Kozloff KM, Goldstein SA (1999) Spatial distribution of phosphate species in mature and newly generated mammalian bone by hyperspectral Raman imaging. J Biomed Opt 4:28PubMedCrossRefGoogle Scholar
  24. 24.
    Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif Tissue Int 68:156–162PubMedCrossRefGoogle Scholar
  25. 25.
    Turunen MJ, Saarakkala S, Rieppo L, Helminen HJ, Jurvelin JS, Isaksson H (2011) Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Appl Spectrosc 65:595–603PubMedCrossRefGoogle Scholar
  26. 26.
    Johansson C, Mellstrom D, Rosengren K, Rundgren Å (1994) A community-based population study of vertebral fractures in 85-year-old men and women. Age Ageing 23:388–392PubMedCrossRefGoogle Scholar
  27. 27.
    Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883–892PubMedCrossRefGoogle Scholar
  28. 28.
    Guo XE, Goldstein SA (2000) Vertebral trabecular bone microscopic tissue elastic modulus and hardness do not change in ovariectomized rats. J Orthop Res 18:333–336PubMedCrossRefGoogle Scholar
  29. 29.
    Maïmoun L, Brennan-Speranza TC, Rizzoli R, Ammann P (2012) Effects of ovariectomy on the changes in microarchitecture and material level properties in response to hind leg disuse in female rats. Bone 51:586–591PubMedCrossRefGoogle Scholar
  30. 30.
    Donnelly E, Meredith DS, Nguyen JT, Boskey AL (2012) Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest. J Orthop Res 30:700–706PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Aerssens J, Boonen S, Joly J, Dequeker J (1997) Variations in trabecular bone composition with anatomical site and age: potential implications for bone quality assessment. J Endocrinol 155:411–421PubMedCrossRefGoogle Scholar
  32. 32.
    Davis JW, Ross PD, Wasnich RD (1994) Evidence for both generalized and regional low bone mass among elderly women. J Bone Miner Res 9:305–309PubMedCrossRefGoogle Scholar
  33. 33.
    Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P (2009) Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 85:335–343PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Boivin G, Bala Y, Doublier A, Farlay D, Ste-Marie L, Meunier P, Delmas P (2008) The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone 43:532–538PubMedCrossRefGoogle Scholar
  35. 35.
    Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289PubMedCrossRefGoogle Scholar
  36. 36.
    Riggs B, Wahner H, Dunn W, Mazess R, Offord K, Melton L (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 67:328PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Bréart G, Meunier PJ, Delmas PD (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res 11:1531–1538PubMedCrossRefGoogle Scholar
  38. 38.
    Kanis J, Johnell O, Odén A, Johansson H, McCloskey E (2008) FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Vashishth D, Gibson G, Khoury J, Schaffler M, Kimura J, Fyhrie D (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201PubMedCrossRefGoogle Scholar
  40. 40.
    Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214PubMedCrossRefGoogle Scholar
  41. 41.
    Carden A, Rajachar RM, Morris MD, Kohn DH (2003) Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Calcif Tissue Int 72:166–175PubMedCrossRefGoogle Scholar
  42. 42.
    Nazarian A, von Stechow D, Zurakowski D, Müller R, Snyder BD (2008) Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tissue Int 83:368–379PubMedCrossRefGoogle Scholar
  43. 43.
    Homminga J, Mccreadie BR, Weinans H, Huiskes R (2003) The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech 36:1461–1467PubMedCrossRefGoogle Scholar
  44. 44.
    Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus–density relationships depend on anatomic site. J Biomech 36:897–904PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Grace Kim
    • 1
  • Jacqueline H. Cole
    • 2
  • Adele L. Boskey
    • 3
    • 4
    • 5
  • Shefford P. Baker
    • 6
  • Marjolein C. H. van der Meulen
    • 1
    • 3
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Department of Biomedical EngineeringUniversity of North CarolinaChapel HillUSA
  3. 3.Musculoskeletal Integrity ProgramHospital for Special SurgeryNew YorkUSA
  4. 4.Department of BiochemistryWeill Medical College of Cornell UniversityNew YorkUSA
  5. 5.Graduate Program in Physiology, Biophysics, and Systems BiologyWeill Medical College of Cornell UniversityNew YorkUSA
  6. 6.Department of Materials Science and EngineeringCornell UniversityIthacaUSA

Personalised recommendations