Advertisement

Calcified Tissue International

, Volume 94, Issue 6, pp 621–631 | Cite as

Type III Collagen Regulates Osteoblastogenesis and the Quantity of Trabecular Bone

  • Susan W. VolkEmail author
  • Shalin R. Shah
  • Arthur J. Cohen
  • Yanjian Wang
  • Becky K. Brisson
  • Laurie K. Vogel
  • Kurt D. Hankenson
  • Sherrill L. Adams
Original Research

Abstract

Type III collagen (Col3), a fibril-forming collagen, is a major extracellular matrix component in a variety of internal organs and skin. It is also expressed at high levels during embryonic skeletal development and is expressed by osteoblasts in mature bone. Loss of function mutations in the gene encoding Col3 (Col3a1) are associated with vascular Ehlers–Danlos syndrome (EDS). Although the most significant clinical consequences of this syndrome are associated with catastrophic failure and impaired healing of soft tissues, several studies have documented skeletal abnormalities in vascular EDS patients. However, there are no reports of the role of Col3 deficiency on the murine skeleton. We compared craniofacial and skeletal phenotypes in young (6–8 weeks) and middle-aged (>1 year) control (Col3+/+) and haploinsufficient (Col3+/−) mice, as well as young null (Col3−/−) mice by microcomputed tomography (μCT). Although Col3+/− mice did not have significant craniofacial abnormalities based upon cranial morphometrics, μCT analysis of distal femur trabecular bone demonstrated significant reductions in bone volume (BV), bone volume fraction (BV/TV), connectivity density, structure model index and trabecular thickness in young adult female Col3+/− mice relative to wild-type littermates. The reduction in BV/TV persisted in female mice at 1 year of age. Next, we evaluated the role of Col3 in vitro. Osteogenesis assays revealed that cultures of mesenchymal progenitors collected from Col3−/− embryos display decreased alkaline phosphatase activity and reduced capacity to undergo mineralization. Consistent with this data, a reduction in expression of osteogenic markers (type I collagen, osteocalcin and bone sialoprotein) correlates with reduced bone Col3 expression in Col3+/− mice and with age in vivo. A small but significant reduction in osteoclast numbers was found in Col3+/− compared to Col3+/+ bones. Taken together, these findings indicate that Col3 plays a role in development of trabecular bone through its effects on osteoblast differentiation.

Keywords

Bone formation Extracellular matrix Mineralization Osteogenesis Osteoporosis Type III collagen 

Notes

Acknowledgments

This work was supported by grants from the University of Pennsylvania Research Foundation and the Penn Center for Musculoskeletal Disorders (SLA and SWV) and the National Institutes of Health (K08AR053945 to SWV and RO1 AR044692 to SLA).

References

  1. 1.
    Shen H, Recker RR, Deng HW (2003) Molecular and genetic mechanisms of osteoporosis: implications for treatment. Curr Mol Med 3:737–757PubMedCrossRefGoogle Scholar
  2. 2.
    Surgeon General (2004) Bone health and osteoporosis: a Report of the Surgeon General. U.S. Department of Health and Human Services, Rockville, MDGoogle Scholar
  3. 3.
    Burge R, Dawson-Hughes B, Solomon DH, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRefGoogle Scholar
  4. 4.
    Franceschi RT (1999) The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 10:40–57PubMedCrossRefGoogle Scholar
  5. 5.
    Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT (2012) Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 27:538–551PubMedCrossRefGoogle Scholar
  6. 6.
    Epstein EH Jr (1974) (Alpha1(3))3 human skin collagen. Release by pepsin digestion and preponderance in fetal life. J Biol Chem 249:3225–3331PubMedGoogle Scholar
  7. 7.
    Smith LT, Holbrook KA, Byers PH (1982) Structure of the dermal matrix during development and in the adult. J Invest Dermatol 79:93s–104sPubMedCrossRefGoogle Scholar
  8. 8.
    Tolstoshev P, Haber R, Trapnell BC, Crystal RG (1981) Procollagen mRNA levels and activity and collagen synthesis during the fetal development of sheep lung, tendon and skin. J Biol Chem 256:9672–9679PubMedGoogle Scholar
  9. 9.
    Birk DE, Mayne R (1997) Localization of collagen types I, III, and V during tendon development. Eur J Cell Biol 72:352–361PubMedGoogle Scholar
  10. 10.
    Henkel W, Glanville RW (1982) Covalent crosslinking between molecules of type I and type III collagen. Eur J Biochem 122:205–231PubMedCrossRefGoogle Scholar
  11. 11.
    Keene DR, Sakai LY, Bachinger HP, Burgeson RE (1987) Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol 105:2392–2402CrossRefGoogle Scholar
  12. 12.
    Keene DR, Sakai LY, Burgeson RE (1991) Human bone contains type III collagen, type VI collagen and fibrillin. J Histochem Cytochem 38:59–69CrossRefGoogle Scholar
  13. 13.
    Reddi AH, Gay R, Gay S, Miller EJ (1977) Transition in collagen types during matrix-induced cartilage, bone and bone marrow formation. Proc Natl Acad Sci USA 74:5589–5592PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Silver MH, Foidart JM, Pratt RM (1981) Distribution of fibronectin and collagen during mouse limb and palate development. Differentiation 18:141–149PubMedCrossRefGoogle Scholar
  15. 15.
    Maehata Y, Takamizawa S, Ozawa S, Izukuri K, Kato Y, Sato S, Lee MC, Kimura A, Hara RI (2007) Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol 26:371–381PubMedCrossRefGoogle Scholar
  16. 16.
    Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka R (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 22:1943–1956PubMedCrossRefGoogle Scholar
  17. 17.
    De Coster PJ, Martens LC, De Paepe A (2005) Oral health in prevalent types of Ehlers–Danlos syndromes. J Oral Pathol Med 34:298–307PubMedCrossRefGoogle Scholar
  18. 18.
    Stanitski DF, Nadjarian R, Stanitski CL, Bawle E, Tsipouras P (2000) Orthopaedic manifestations of Ehlers–Danlos syndrome. Clin Orthop Relat Res 376:213–221PubMedCrossRefGoogle Scholar
  19. 19.
    Yen JL, Lin SP, Chen MR, Niu DM (2006) Clinical features of Ehlers–Danlos syndrome. J Formos Med Assoc 105:475–480PubMedCrossRefGoogle Scholar
  20. 20.
    Liu X, Wu H, Burne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL (2011) Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 194:25–37PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Richtsmeier JT, Baxter LL, Reeves RH (2000) Parallels of craniofacial maldevelopment in down syndrome and Ts65Dn mice. Dev Dyn 217:137–145PubMedCrossRefGoogle Scholar
  23. 23.
    Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three dimensional self-assembling peptide scaffold. Tissue Eng 12:2215–2227PubMedCrossRefGoogle Scholar
  24. 24.
    Legner CJ, Lepper C, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2004) Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation. J Cell Physiol 200:327–333CrossRefGoogle Scholar
  25. 25.
    Volk SW, Wang Y, Hankenson KD (2012) Effects of donor characteristics and ex vivo expansion on canine mesenchymal stem cell properties: implications for MSC-based therapies. Cell Transplant 21:2189–2200PubMedCrossRefGoogle Scholar
  26. 26.
    Volk SW, Diefenderfer DL, Christopher SA, Haskins ME, Leboy PS (2005) Effects of osteogenic inducers on cultures of canine mesenchymal stem cells. Am J Vet Res 66:1729–1737PubMedCrossRefGoogle Scholar
  27. 27.
    Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Galléa S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G (2001) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-[beta]1 on osteoblast differentiation. Bone 29:323–330PubMedCrossRefGoogle Scholar
  28. 28.
    Benatti BB, Silverio KG, Casati MZ, Sallum EA, Nociti FH Jr (2008) Influence of aging on biological properties of periodontal ligament cells. Connect Tissue Res 49:401–408PubMedCrossRefGoogle Scholar
  29. 29.
    Furth JJ, Allen RG, Tresini M, Keogh B, Cristofalo VJ (1997) Abundance of alpha 1(I) and alpha 1(III) procollagen and p21 mRNAs in fibroblasts cultured from fetal and postnatal dermis. Mech Ageing Dev 97:131–142PubMedCrossRefGoogle Scholar
  30. 30.
    Mays PK, Bishop JE, Laurent GJ (1988) Age-related changes in the proportion of types I and III collagen. Mech Ageing Dev 45:203–212PubMedCrossRefGoogle Scholar
  31. 31.
    Takeda K, Gosiewska A, Peterkofsky B (1992) Similar, but not identical, modulation of expression of extracellular matrix components during in vitro and in vivo aging of human skin fibroblasts. J Cell Phys 153:450–459CrossRefGoogle Scholar
  32. 32.
    Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Cooper TK, Zhong Q, Krawczyk M, Tae HJ, MÅller GA, Schubert R, Myers LA, Dietz HC, Talan MI, Briest W (2010) The haploinsufficient Col3a1 mouse as a model for vascular Ehlers–Danlos syndrome. Vet Pathol 47:1028–1039PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM (2011) Dynamic reciprocity in the wound microenvironment. Wound Rep Reg 19:134–148CrossRefGoogle Scholar
  35. 35.
    Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between TGF-beta 1 induced apoptosis and epithelial–mesenchymal transition. Mol Biol Cell 23:677–689CrossRefGoogle Scholar
  36. 36.
    Hurme T, Kalimo H, Sandberg M, Lehto JM, Vuorio E (1991) Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Lab Invest 64:76–84PubMedGoogle Scholar
  37. 37.
    Liu SH, Yang RS, Al-Haikh R, Lane JM (1995) Collagen in tendon, ligament and bone healing. Clin Orthop Relat Res 318:265–278PubMedGoogle Scholar
  38. 38.
    Merkel JR, DiPaolo BR, Hallock GG, Rice DC (1988) Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med 187:493–497PubMedCrossRefGoogle Scholar
  39. 39.
    Briest W, Cooper TK, Tae HJ, Krawczyk M, McDonald DM, Talan MI (2011) Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers–Danlos syndrome. J Pharmacol Exp Ther 337:621–627PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X (2011) G protein–coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci USA 108:12925–12930PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Apaja-Sarkkinen M, Autio-Harmainen H, Alavaikko M, Risteli J, Risteli L (1986) Immunohistochemical study of basement membrane proteins and type III procollagen in myelofibrosis. Br J Haematol 63:571–580PubMedCrossRefGoogle Scholar
  42. 42.
    Becker J, Schuppan D, Benzian H, Bals T, Hahn EG, Cantaluppi C, Reichart P (1986) Immunohistochemical distribution of collagens type IV, V, and VI and of pro-collagens types I and III in human alveolar bone and dentine. J Histochem Cytochem 34:1417–1429PubMedCrossRefGoogle Scholar
  43. 43.
    Bentley S, Alabaster O, Foidart JM (1981) Collagen heterogeneity in normal human bone marrow. Br J Haematol 48:287–291PubMedCrossRefGoogle Scholar
  44. 44.
    Miller E (1973) A review of biochemical studies on the genetically distinct collagens of the skeletal system. Clin Orthop Relat Res 92:260–280PubMedCrossRefGoogle Scholar
  45. 45.
    Muller P, Raisch K, Matzen K, Gay S (1977) Presence of type III collagen in bone from a patient with osteogenesis imperfecta. Eur J Pediatr 125:29–37PubMedCrossRefGoogle Scholar
  46. 46.
    Carter D, Sloan P, Aaron JE (1991) Immunolocalization of collagen types I and III, tenascin and fibronectin in intramembranous bone. J Histochem Cytochem 39:599–606PubMedCrossRefGoogle Scholar
  47. 47.
    Luther F, Saino H, Carter DH, Aaron JE (2003) Evidence for an extensive collagen type III/VI proximal domain in the rat femur. Bone 32:652–659PubMedCrossRefGoogle Scholar
  48. 48.
    Stevenson K, Kucich U, Whitbeck C, Levin RM, Howard PS (2006) Functional changes in bladder tissue from type III collagen-deficient mice. Mol Cell Biochem 283:107–114PubMedCrossRefGoogle Scholar
  49. 49.
    Germain DP (2007) Ehlers–Danlos syndrome type IV. Orphanet J Rare Dis 2:32–41PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Balla B, Kósa JP, Kiss J, Borsy A, Podani J, Takács I, Lazáry A, Nagy Z, Bácsi K, Speer G, Orosz L, Lakatos P (2008) Different gene expression patterns in the bone tissue of aging and postmenopausal osteoporotic and non-osteoporotic women. Calcif Tissue Int 82:12–26PubMedCrossRefGoogle Scholar
  51. 51.
    Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ (2010) Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int 86:470–483PubMedCrossRefGoogle Scholar
  52. 52.
    Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220PubMedCrossRefGoogle Scholar
  53. 53.
    Oganesian A, Au S, Horst JA, Holzhausen LC, Macy AJ, Pace JM, Bornstein P (2006) The NH2-terminal propeptide of type I procollagen acts intracellularly to modulate cell function. J Biol Chem 281:38507–38518PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Zhu Y, Oganesian A, Keene DR, Sandell LJ (1999) Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-beta1 and BMP2. J Cell Biol 144:1069–1080PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Zoppi N, Gardella R, DePaepe A, Barlati S, Colombi M (2004) Human fibroblasts with mutations in COL5A1 and COL3A1 genes do not organize collagens and fibronectin in the extracellular matrix, down-regulate α2β1 integrin, and recruit αvβ3 instead of α5β1 integrin. J Biol Chem 279:18157–18168PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Susan W. Volk
    • 1
    • 2
    Email author
  • Shalin R. Shah
    • 3
    • 4
  • Arthur J. Cohen
    • 3
  • Yanjian Wang
    • 1
  • Becky K. Brisson
    • 1
  • Laurie K. Vogel
    • 1
  • Kurt D. Hankenson
    • 5
    • 6
  • Sherrill L. Adams
    • 3
  1. 1.Department of Clinical Studies-PhiladelphiaUniversity of Pennsylvania School of Veterinary MedicinePhiladelphiaUSA
  2. 2.Department of Animal BiologyUniversity of Pennsylvania School of Veterinary MedicinePhiladelphiaUSA
  3. 3.Department of Biochemistry, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of Clinical Studies-New Bolton Center, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Department of Orthopaedic Surgery, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations