Advertisement

Calcified Tissue International

, Volume 94, Issue 1, pp 78–87 | Cite as

Adipocytes and the Regulation of Bone Remodeling: A Balancing Act

  • Mark E. Nuttall
  • Forum Shah
  • Vikramjeet Singh
  • Caasy Thomas-Porch
  • Trivia Frazier
  • Jeffrey M. Gimble
Review

Abstract

Throughout life, a balance exists within the marrow cavity between adipose tissue and bone. Each tissue derives from a common progenitor cell known both as a “bone marrow-derived multipotent stromal cell” and as a “mesenchymal stem cell” (BMSC). The majority of in vitro and in vivo data suggest that BMSCs differentiate into adipocytes or osteoblasts in a reciprocal manner. For example, while ligand induction of the transcription factors peroxisome proliferator-activated receptor γ initiates BMSC adipogenesis, it suppresses osteogenesis. Nevertheless, this hypothesis may oversimplify a complex regulatory paradigm. The picture may be further complicated by the systemic impact of extramedullary adipose depots on bone via the secretion of protein adipokines and lipid metabolites. This review focuses on past and current literature examining the mechanisms governing the adipose–bone interface.

Keywords

Adipocyte Bone marrow cell Gene transcription regulation Mesenchymal stem cell Osteoblast 

Notes

Acknowledgments

The authors thank Ms. Laura Dallam for administrative and editorial assistance in the preparation of this manuscript. Jeffrey M. Gimble is the cofounder and chief scientific officer of LaCell, a for-profit biotechnology company focusing on the use of adipose stromal/stem cells for research and therapeutic applications.

References

  1. 1.
    Beresford JN, Bennett JH, Devlin C et al (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351PubMedGoogle Scholar
  2. 2.
    Gimble JM, Robinson CE, Wu X et al (1996) The function of adipocytes in the bone marrow stroma: an update. Bone 19:421–428PubMedCrossRefGoogle Scholar
  3. 3.
    Gimble JM, Zvonic S, Floyd ZE et al (2006) Playing with bone and fat. J Cell Biochem 98:251–266PubMedCrossRefGoogle Scholar
  4. 4.
    Nuttall ME, Gimble JM (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 4:290–294PubMedCrossRefGoogle Scholar
  5. 5.
    Gimble JM, Nuttall ME (2004) Bone and fat: old questions, new insights. Endocrine 23:183–188PubMedCrossRefGoogle Scholar
  6. 6.
    Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMedGoogle Scholar
  7. 7.
    Friedenstein AY (1968) Induction of bone tissue by transitional epithelium. Clin Orthop Relat Res 59:21–37PubMedCrossRefGoogle Scholar
  8. 8.
    Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359PubMedGoogle Scholar
  9. 9.
    Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60PubMedGoogle Scholar
  10. 10.
    Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedCentralPubMedGoogle Scholar
  11. 11.
    Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedCentralPubMedGoogle Scholar
  12. 12.
    Strissel KJ, Stancheva Z, Miyoshi H et al (2007) Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56:2910–2918PubMedCrossRefGoogle Scholar
  13. 13.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359PubMedCrossRefGoogle Scholar
  14. 14.
    Seale P, Bjork B, Yang W et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Seale P, Conroe HM, Estall J et al (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121:96–105PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Seale P, Kajimura S, Yang W et al (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wu J, Bostrom P, Sparks LM et al (2010) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376CrossRefGoogle Scholar
  18. 18.
    Huggins C, Blocksom BH, Noonan WJ (1936) Temperature conditions in bone marrow of rabbit, pigeon, and albino rat. Am J Physiol 115:395–401Google Scholar
  19. 19.
    Huggins C, Noonan WJ (1936) An increase in reticulo-endothelial cells in outlying bone marrow consequent upon a local increase in temperature. J Exp Med 64:275–280PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Krings A, Rahman S, Huang S et al (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Salisbury E, Hipp J, Olmsted-Davis EA et al (2012) Histologic identification of brown adipose and peripheral nerve involvement in human atherosclerotic vessels. Hum Pathol 43:2212–2223CrossRefGoogle Scholar
  22. 22.
    Olmsted-Davis E, Gannon FH, Ozen M et al (2007) Hypoxic adipocytes pattern early heterotopic bone formation. Am J Pathol 170:620–632PubMedCrossRefGoogle Scholar
  23. 23.
    Nishio N, Yoneshiro T, Nakahara M et al (2012) Production of functional classical brown adipocytes from human pluripotent stem cells using hemopoietin cocktail without gene transfer. Cell Metab 16:394–406PubMedCrossRefGoogle Scholar
  24. 24.
    Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179:1677–1682PubMedCrossRefGoogle Scholar
  25. 25.
    Zhu J, Garrett R, Jung Y et al (2007) Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 109:3706–3712PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841PubMedCrossRefGoogle Scholar
  27. 27.
    Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMedCrossRefGoogle Scholar
  28. 28.
    Gimble JM (1990) The function of adipocytes in the bone marrow stroma. New Biol 2:304–312PubMedGoogle Scholar
  29. 29.
    Yokota T, Meka CS, Medina KL et al (2002) Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest 109:1303–1310PubMedCentralPubMedGoogle Scholar
  30. 30.
    Yokota T, Meka CS, Kouro T et al (2003) Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase–prostaglandin pathway in stromal cells. J Immunol 171:5091–5099PubMedGoogle Scholar
  31. 31.
    Bilwani FA, Knight KL (2012) Adipocyte-derived soluble factor(s) inhibits early stages of B lymphopoiesis. J Immunol 189:4379–4386PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Cousin B, Andre M, Arnaud E et al (2003) Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun 301:1016–1022PubMedCrossRefGoogle Scholar
  33. 33.
    Han J, Koh YJ, Moon HR et al (2010) Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood 115:957–964PubMedCrossRefGoogle Scholar
  34. 34.
    Corre J, Barreau C, Cousin B et al (2006) Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol 208:282–288PubMedCrossRefGoogle Scholar
  35. 35.
    Kilroy GE, Foster S, Wu X et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212:702–709PubMedCrossRefGoogle Scholar
  36. 36.
    Kletzien RF, Clarke SD, Ulrich RG (1992) Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol Pharmacol 41:393–398PubMedGoogle Scholar
  37. 37.
    Kletzien RF, Foellmi LA, Harris PK et al (1992) Adipocyte fatty acid-binding protein: regulation of gene expression in vivo and in vitro by an insulin-sensitizing agent. Mol Pharmacol 42:558–562PubMedGoogle Scholar
  38. 38.
    Tontonoz P, Hu E, Graves RA et al (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8:1224–1234PubMedCrossRefGoogle Scholar
  39. 39.
    Gimble JM, Robinson CE, Wu X et al (1996) Peroxisome proliferator–activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50:1087–1094PubMedGoogle Scholar
  40. 40.
    Lecka-Czernik B, Gubrij I, Moerman EJ et al (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 74:357–371PubMedCrossRefGoogle Scholar
  41. 41.
    Lazarenko OP, Rzonca SO, Suva LJ et al (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38:74–84PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Rzonca SO, Suva LJ, Gaddy D et al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Tornvig L, Mosekilde LI, Justesen J et al (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50PubMedCrossRefGoogle Scholar
  44. 44.
    Lazarenko OP, Rzonca SO, Hogue WR et al (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Akune T, Ohba S, Kamekura S et al (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedCentralPubMedGoogle Scholar
  46. 46.
    Kawaguchi H, Akune T, Yamaguchi M et al (2005) Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab 23:275–279PubMedCrossRefGoogle Scholar
  47. 47.
    Ali AA, Weinstein RS, Stewart SA et al (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235PubMedCrossRefGoogle Scholar
  48. 48.
    Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329–337PubMedCrossRefGoogle Scholar
  49. 49.
    Chan BY, Gartland A, Wilson PJ et al (2007) PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 40:149–159PubMedCrossRefGoogle Scholar
  50. 50.
    Hassumi MY, Silva-Filho VJ, Campos-Júnior JC et al (2009) PPAR-gamma agonist rosiglitazone prevents inflammatory periodontal bone loss by inhibiting osteoclastogenesis. Int Immunopharmacol 9:1150–1158PubMedCrossRefGoogle Scholar
  51. 51.
    Wei W, Wang X, Yang M et al (2010) PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11:503–516PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Schwartz AV, Sellmeyer DE, Vittinghoff E et al (2006) Thiazolidinedione (TZD) use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lecka-Czernik B (2010) Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep 8:178–184PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Tanne JH (2007) FDA places “black box” warning on antidiabetes drugs. Br Med J 334:1237CrossRefGoogle Scholar
  55. 55.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRefGoogle Scholar
  56. 56.
    Umek RM, Friedman AD, McKnight SL (1991) CCAAT-enhancer binding protein: a component of a differentiation switch. Science 251:288–292PubMedCrossRefGoogle Scholar
  57. 57.
    Yeh WC, Cao Z, Classon M et al (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9:168–181PubMedCrossRefGoogle Scholar
  58. 58.
    Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5:1538–1552PubMedCrossRefGoogle Scholar
  59. 59.
    Schopfer FJ, Lin Y, Baker PR et al (2005) Nitrolinoleic acid: an endogenous peroxisome proliferator–activated receptor gamma ligand. Proc Natl Acad Sci USA 102:2340–2345PubMedCrossRefGoogle Scholar
  60. 60.
    Li X, Jin L, Cui Q et al (2005) Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int 16:101–108PubMedCrossRefGoogle Scholar
  61. 61.
    Wang GJ, Cui Q, Balian G (2000) The Nicolas Andry award. The pathogenesis and prevention of steroid-induced osteonecrosis. Clin Orthop Relat Res 370:295–310PubMedCrossRefGoogle Scholar
  62. 62.
    Weinstein RS, Jilka RL, Parfitt AM et al (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Weinstein RS (2001) Glucocorticoid-induced osteoporosis. Rev Endocr Metab Disord 2:65–73PubMedCrossRefGoogle Scholar
  64. 64.
    Kha HT, Basseri B, Shouhed D et al (2004) Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res 19:830–840PubMedCrossRefGoogle Scholar
  65. 65.
    Kim WK, Meliton V, Tetradis S et al (2010) Osteogenic oxysterol, 20(S)-hydroxycholesterol, induces notch target gene expression in bone marrow stromal cells. J Bone Miner Res 25:782–795PubMedCrossRefGoogle Scholar
  66. 66.
    Amantea CM, Kim WK, Meliton V et al (2008) Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling. J Cell Biochem 105:424–436PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Richardson JA, Amantea CM, Kianmahd B et al (2007) Oxysterol-induced osteoblastic differentiation of pluripotent mesenchymal cells is mediated through a PKC- and PKA-dependent pathway. J Cell Biochem 100(5):1131–1145PubMedCrossRefGoogle Scholar
  68. 68.
    Martin RB, Chow BD, Lucas PA (1990) Bone marrow fat content in relation to bone remodeling and serum chemistry in intact and ovariectomized dogs. Calcif Tissue Int 46:189–194PubMedCrossRefGoogle Scholar
  69. 69.
    Martin RB, Zissimos SL (1991) Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone 12:123–131PubMedCrossRefGoogle Scholar
  70. 70.
    Schoutens A, Verhas M, L’Hermite-Baleriaux M et al (1984) Growth and bone haemodynamic responses to castration in male rats. Reversibility by testosterone. Acta Endocrinol (Copenh) 107:428–432Google Scholar
  71. 71.
    Johnson AL, Rendano VT (1984) Effects of castration, with and without testosterone replacement, on leg bone integrity in the domestic fowl. Am J Vet Res 45:319–325PubMedGoogle Scholar
  72. 72.
    Benvenuti S, Cellai I, Luciani P et al (2011) Androgens and estrogens prevent rosiglitazone-induced adipogenesis in human mesenchymal stem cells. J Endocrinol Invest 35:365–371PubMedGoogle Scholar
  73. 73.
    Dang ZC, van Bezooijen RL, Karperien M et al (2002) Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 17:394–405PubMedCrossRefGoogle Scholar
  74. 74.
    Heim M, Frank O, Kampmann G et al (2004) The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 145:848–859PubMedCrossRefGoogle Scholar
  75. 75.
    Okazaki R, Inoue D, Shibata M et al (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143:2349–2356PubMedGoogle Scholar
  76. 76.
    Duque G, Macoritto M, Kremer R (2004) Vitamin D treatment of senescence accelerated mice (SAM-P/6) induces several regulators of stromal cell plasticity. Biogerontology 5:421–429PubMedCrossRefGoogle Scholar
  77. 77.
    Kelly KA, Gimble JM (1998) 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology 39:2622–2628Google Scholar
  78. 78.
    Cianferotti L, Demay MB (2007) VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem 101:80–88PubMedCrossRefGoogle Scholar
  79. 79.
    Nimitphong H, Holick MF, Fried SK et al (2012) 25-Hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 promote the differentiation of human subcutaneous preadipocytes. PLoS ONE 7:e52171PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Zhang S, Chan M, Aubin JE (2006) Pleiotropic effects of the steroid hormone 1,25-dihydroxyvitamin D3 on the recruitment of mesenchymal lineage progenitors in fetal rat calvaria cell populations. J Mol Endocrinol 36:425–433PubMedCrossRefGoogle Scholar
  81. 81.
    Ding J, Nagai K, Woo JT (2003) Insulin-dependent adipogenesis in stromal ST2 cells derived from murine bone marrow. Biosci Biotechnol Biochem 67:314–321PubMedCrossRefGoogle Scholar
  82. 82.
    Lee JS, Park JH, Kwon IK et al (2011) Retinoic acid inhibits BMP4-induced C3H10T1/2 stem cell commitment to adipocyte via downregulating Smad/p38MAPK signaling. Biochem Biophys Res Commun 409:550–555PubMedCrossRefGoogle Scholar
  83. 83.
    Skillington J, Choy L, Derynck R (2002) Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol 159:135–146PubMedCrossRefGoogle Scholar
  84. 84.
    Dingwall M, Marchildon F, Gunanayagam A et al (2011) Retinoic acid-induced Smad3 expression is required for the induction of osteoblastogenesis of mesenchymal stem cells. Differentiation 82:57–65PubMedCrossRefGoogle Scholar
  85. 85.
    Zvonic S, Ptitsyn AA, Conrad SA et al (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970PubMedCrossRefGoogle Scholar
  86. 86.
    Zvonic S, Ptitsyn AA, Kilroy G et al (2007) Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res 22:357–365PubMedCrossRefGoogle Scholar
  87. 87.
    Otway DT, Mantele S, Bretschneider S et al (2011) Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and have type 2 diabetes. Diabetes 60:1577–1581PubMedCrossRefGoogle Scholar
  88. 88.
    Wu X, Zvonic S, Floyd ZE et al (2007) Induction of circadian gene expression in human subcutaneous adipose-derived stem cells. Obesity (Silver Spring) 15:2560–2570CrossRefGoogle Scholar
  89. 89.
    Loboda A, Kraft WK, Fine B et al (2009) Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Med Genomics 2:7PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Wu X, Yu G, Parks H et al (2008) Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone 42:861–870PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Shimba S, Ishii N, Ohta Y et al (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102:12071–12076PubMedCrossRefGoogle Scholar
  92. 92.
    Kumar N, Solt LA, Wang Y et al (2010) Regulation of adipogenesis by natural and synthetic REV-ERB ligands. Endocrinology 151:3015–3025PubMedCrossRefGoogle Scholar
  93. 93.
    Chawla A, Lazar MA (1993) Induction of Rev-ErbA alpha, an orphan receptor encoded on the opposite strand of the alpha-thyroid hormone receptor gene, during adipocyte differentiation. J Biol Chem 268:16265–16269PubMedGoogle Scholar
  94. 94.
    Shi X, Shi W, Li Q et al (2003) A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO Rep 4:374–380PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Gimble JM, Ptitsyn AA, Goh BC et al (2009) Delta sleep-inducing peptide and glucocorticoid-induced leucine zipper: potential links between circadian mechanisms and obesity? Obes Rev 10(Suppl 2):46–51PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang W, Yang N, Shi XM (2008) Regulation of mesenchymal stem cell osteogenic differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem 283:4723–4729PubMedCrossRefGoogle Scholar
  97. 97.
    Lemberger T, Saladin R, Vazquez M et al (1996) Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271:1764–1769PubMedCrossRefGoogle Scholar
  98. 98.
    Matsumoto E, Ishihara A, Tamai S et al (2010) Time of day and nutrients in feeding govern daily expression rhythms of the gene for sterol regulatory element-binding protein (SREBP)-1 in the mouse liver. J Biol Chem 285:33028–33036PubMedCrossRefGoogle Scholar
  99. 99.
    Brewer M, Lange D, Baler R et al (2005) SREBP-1 as a transcriptional integrator of circadian and nutritional cues in the liver. J Biol Rhythms 20:195–205PubMedCrossRefGoogle Scholar
  100. 100.
    Baggs JE, Green CB (2003) Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr Biol 13:189–198PubMedCrossRefGoogle Scholar
  101. 101.
    Kawai M, Delany AM, Green CB et al (2010) Nocturnin suppresses igf1 expression in bone by targeting the 3′ untranslated region of igf1 mRNA. Endocrinology 151:4861–4870PubMedCrossRefGoogle Scholar
  102. 102.
    Kawai M, Green CB, Lecka-Czernik B et al (2010) A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci USA 107:10508–10513PubMedCrossRefGoogle Scholar
  103. 103.
    Guntur AR, Kawai M, Le P et al (2011) An essential role for the circadian-regulated gene nocturnin in osteogenesis: the importance of local timekeeping in skeletal homeostasis. Ann N Y Acad Sci 1237:58–63PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Ramsey KM, Yoshino J, Brace CS et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Li Y, He X, He J et al (2011) Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: a possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J Bone Miner Res 26:2656–2664PubMedCrossRefGoogle Scholar
  106. 106.
    Gimble JM, Sutton GM, Bunnell BA, Ptitsyn AA, Floyd ZE (2011) Prospective influences of circadian clocks in adipose tissue and metabolism. Nat Rev Endocrinol 7:98–107PubMedCrossRefGoogle Scholar
  107. 107.
    Machida M, Dubousset J, Imamura Y et al (1993) An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine (Phila Pa 1976) 18:1609–1615CrossRefGoogle Scholar
  108. 108.
    Brydon L, Petit L, Delagrange P, Strosberg AD, Jockers R (2001) Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology 142:4264–4271PubMedGoogle Scholar
  109. 109.
    Bartness TJ, Goldman BD (1988) Peak duration of serum melatonin and short-day responses in adult Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 255:R812–R822Google Scholar
  110. 110.
    Friedman JM (2009) Leptin at 14 y of age: an ongoing story. Am J Clin Nutr 89:973S–979SPubMedCrossRefGoogle Scholar
  111. 111.
    Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546PubMedCrossRefGoogle Scholar
  112. 112.
    Baumann H, Morella KK, White DW et al (1996) The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci USA 93:8374–8378PubMedCrossRefGoogle Scholar
  113. 113.
    Thomas T, Gori F, Khosla S et al (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638PubMedGoogle Scholar
  114. 114.
    Bartell SM, Rayalam S, Ambati S et al (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26:1710–1720PubMedCrossRefGoogle Scholar
  115. 115.
    Williams GA, Callon KE, Watson M et al (2011) Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res 26:1698–1709PubMedCrossRefGoogle Scholar
  116. 116.
    Hamrick MW, Della-Fera MA, Choi YH et al (2005) Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res 20:994–1001PubMedCrossRefGoogle Scholar
  117. 117.
    Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRefGoogle Scholar
  118. 118.
    Takeda S, Elefteriou F, Levasseur R et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedCrossRefGoogle Scholar
  119. 119.
    Elefteriou F, Takeda S, Ebihara K et al (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA 101:3258–3263PubMedCrossRefGoogle Scholar
  120. 120.
    Elefteriou F, Ahn JD, Takeda S et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRefGoogle Scholar
  121. 121.
    Sims NA, Walsh NC (2010) GP130 cytokines and bone remodelling in health and disease. BMB Rep 43:513–523PubMedCrossRefGoogle Scholar
  122. 122.
    Gimble JM, Wanker F, Wang CS et al (1994) Regulation of bone marrow stromal cell differentiation by cytokines whose receptors share the gp130 protein. J Cell Biochem 54:122–133PubMedCrossRefGoogle Scholar
  123. 123.
    White UA, Stephens JM (2011) The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des 17:340–346PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270PubMedCrossRefGoogle Scholar
  126. 126.
    Rubin CT, Capilla E, Luu YK et al (2007) Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci USA 104:17879–17884PubMedCrossRefGoogle Scholar
  127. 127.
    Luu YK, Capilla E, Rosen CJ et al (2009) Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res 24:50–61PubMedCrossRefGoogle Scholar
  128. 128.
    Luu YK, Pessin JE, Judex S, Rubin J, Rubin CT (2009) Mechanical signals as a non-invasive means to influence mesenchymal stem cell fate, promoting bone and suppressing the fat phenotype. Bonekey Osteovision 6:132–149PubMedCentralPubMedGoogle Scholar
  129. 129.
    Charoenpanich A, Wall ME, Tucker CJ et al (2011) Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17:2615–2627PubMedCrossRefGoogle Scholar
  130. 130.
    Bredella MA, Fazeli PK, Miller KK et al (2009) Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab 94:2129–2136PubMedCrossRefGoogle Scholar
  131. 131.
    Burris TP (2008) Nuclear hormone receptors for heme: REV-ERBalpha and REV-ERBbeta are ligand-regulated components of the mammalian clock. Mol Endocrinol 22:1509–1520PubMedCrossRefGoogle Scholar
  132. 132.
    Shore EM, Ahn J, Jan de Beur S et al (2002) Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N Engl J Med 346:99–106PubMedCrossRefGoogle Scholar
  133. 133.
    Davis TA, O’Brien FP, Anam K et al (2011) Heterotopic ossification in complex orthopaedic combat wounds: quantification and characterization of osteogenic precursor cell activity in traumatized muscle. J Bone Joint Surg Am 93:1122–1131PubMedGoogle Scholar
  134. 134.
    Shore EM, Kaplan FS (2011) Role of altered signal transduction in heterotopic ossification and fibrodysplasia ossificans progressiva. Curr Osteoporos Rep 9:83–88PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Cheng SL, Shao JS, Charlton-Kachigian N et al (2003) MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem 278:45969–45977PubMedCrossRefGoogle Scholar
  136. 136.
    Tontonoz P, Kim JB, Graves RA et al (1993) ADD1: a novel helix–loop–helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 13:4753–4759PubMedCentralPubMedGoogle Scholar
  137. 137.
    Isenmann S, Arthur A, Zannettino AC et al (2009) TWIST family of basic helix–loop–helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells 27:2457–2468PubMedCrossRefGoogle Scholar
  138. 138.
    Oishi Y, Manabe I, Tobe K et al (2005) Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1:27–39PubMedCrossRefGoogle Scholar
  139. 139.
    Chen Z, Torrens JI, Anand A et al (2005) Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab 1:93–106PubMedCrossRefGoogle Scholar
  140. 140.
    You L, Pan L, Chen L et al (2012) Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts. J Transl Med 10:11PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRefGoogle Scholar
  142. 142.
    Shi H, Norman AW, Okamura WH et al (2001) 1α25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J 15:2751–2753PubMedGoogle Scholar
  143. 143.
    Liu J, Farmer SR (2004) Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J Biol Chem 279:45020–45027PubMedCrossRefGoogle Scholar
  144. 144.
    Prestwich TC, Macdougald OA (2007) Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 19:612–617PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Zhou S, Lechpammer S, Greenberger JS et al (2005) Hypoxia inhibition of adipocytogenesis in human bone marrow stromal cells requires transforming growth factor-beta/Smad3 signaling. J Biol Chem 280:22688–22696PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Xu Y, Takahashi Y, Wang Y et al (2009) Downregulation of GATA-2 and overexpression of adipogenic gene-PPARgamma in mesenchymal stem cells from patients with aplastic anemia. Exp Hematol 37:1393–1399PubMedCrossRefGoogle Scholar
  147. 147.
    Zhang X, Yang M, Lin L et al (2006) Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcif Tissue Int 79:169–178PubMedCrossRefGoogle Scholar
  148. 148.
    Liu LF, Shen WJ, Zhang ZH et al (2010) Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARgamma and adiponectin. J Cell Physiol 225:837–845PubMedCrossRefGoogle Scholar
  149. 149.
    Geoffroy V, Ducy P, Karsenty G (1995) A PEBP2 alpha/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element. J Biol Chem 270:30973–30979PubMedCrossRefGoogle Scholar
  150. 150.
    Hong JH, Hwang ES, McManus MT et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078PubMedCrossRefGoogle Scholar
  151. 151.
    Hong JH, Yaffe MB (2006) TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 5:176–179PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mark E. Nuttall
    • 1
  • Forum Shah
    • 2
  • Vikramjeet Singh
    • 2
  • Caasy Thomas-Porch
    • 2
    • 3
  • Trivia Frazier
    • 2
  • Jeffrey M. Gimble
    • 2
    • 4
    • 5
  1. 1.Janssen PharmaceuticalsTitusvilleUSA
  2. 2.Stem Cell Biology Laboratory, Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeUSA
  3. 3.Department of Biomedical SciencesTulane University School of MedicineNew OrleansUSA
  4. 4.Center for Stem Cell Research and Regenerative MedicineTulane University School of MedicineNew OrleansUSA
  5. 5.Department of Orthopaedic SurgeryLouisiana State University Health Science CenterNew OrleansUSA

Personalised recommendations