Calcified Tissue International

, Volume 94, Issue 1, pp 112–124 | Cite as

Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche

  • Laura M. Calvi
  • Daniel C. Link


The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.


Adipocyte Bone marrow cell Mesenchymal stem cell Osteoblast Osteoclast 



The authors thank Dr. B. J. Frisch for review of the manuscript and members of the Calvi and Link laboratories for helpful discussions. This work is supported by the National Institutes of Health (NIDDK grants DK076876 and DK081843 to L. M. C. and HL60772 to D. C. L.).


  1. 1.
    Hartenstein V (2006) Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 22:677–712PubMedGoogle Scholar
  2. 2.
    Bianco P, Robey PG et al (2010) “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther 21(9):1057–1066PubMedGoogle Scholar
  3. 3.
    Chang MK, Raggatt LJ et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244PubMedGoogle Scholar
  4. 4.
    Fazeli PK, Horowitz MC et al (2013) Marrow fat and bone—new perspectives. J Clin Endocrinol Metab 98(3):935–945PubMedGoogle Scholar
  5. 5.
    Wilson A, Murphy MJ et al (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18(22):2747–2763PubMedGoogle Scholar
  6. 6.
    Xie Y, Yin T et al (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457(7225):97–101PubMedGoogle Scholar
  7. 7.
    Zhang J, Niu C et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841PubMedGoogle Scholar
  8. 8.
    Kiel MJ, Yilmaz OH et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121PubMedGoogle Scholar
  9. 9.
    Sugiyama T, Kohara H et al (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988PubMedGoogle Scholar
  10. 10.
    Mendez-Ferrer S, Michurina TV et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834PubMedCentralPubMedGoogle Scholar
  11. 11.
    Nombela-Arrieta C, Pivarnik G et al (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15(5):533–543PubMedGoogle Scholar
  12. 12.
    Cantor AB, Orkin SH (2001) Hematopoietic development: a balancing act. Curr Opin Genet Dev 11(5):513–519PubMedGoogle Scholar
  13. 13.
    Enver T, Pera M et al (2009) Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4(5):387–397PubMedGoogle Scholar
  14. 14.
    Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462(7273):587–594PubMedGoogle Scholar
  15. 15.
    Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25PubMedGoogle Scholar
  16. 16.
    Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199(4336):1443–1445PubMedGoogle Scholar
  17. 17.
    Lord BI, Testa NG et al (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46(1):65–72PubMedGoogle Scholar
  18. 18.
    Lo Celso C, Fleming HE et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457(7225):92–96PubMedCentralPubMedGoogle Scholar
  19. 19.
    Nilsson SK, Dooner MS et al (1997) Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 89(11):4013–4020PubMedGoogle Scholar
  20. 20.
    Nilsson SK, Johnston HM et al (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299PubMedGoogle Scholar
  21. 21.
    Kai T, Spradling A (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc Natl Acad Sci USA 100(8):4633–4638PubMedGoogle Scholar
  22. 22.
    Fuchs E, Tumbar T et al (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778PubMedGoogle Scholar
  23. 23.
    Losick VP, Morris LX et al (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21(1):159–171PubMedGoogle Scholar
  24. 24.
    Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9(2):129–136PubMedCentralPubMedGoogle Scholar
  25. 25.
    Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906PubMedGoogle Scholar
  26. 26.
    Dzierzak E (1999) Embryonic beginnings of definitive hematopoietic stem cells. Ann NY Acad Sci 872:256–262PubMedGoogle Scholar
  27. 27.
    Fliedner MC (2002) Research within the field of blood and marrow transplantation nursing: how can it contribute to higher quality of care? Int J Hematol 76(Suppl 2):289–291PubMedGoogle Scholar
  28. 28.
    Osawa M, Hanada K et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242–245PubMedGoogle Scholar
  29. 29.
    Suzuki N, Ohneda O et al (2006) Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc Natl Acad Sci USA 103(7):2202–2207PubMedGoogle Scholar
  30. 30.
    Storb R, Graham TC et al (1977) Demonstration of hemopoietic stem cells in the peripheral blood of baboons by cross circulation. Blood 50(3):537–542PubMedGoogle Scholar
  31. 31.
    Wagers AJ, Sherwood RI et al (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297(5590):2256–2259PubMedGoogle Scholar
  32. 32.
    Wright DE, Wagers AJ et al (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294(5548):1933–1936PubMedGoogle Scholar
  33. 33.
    Lapid K, Itkin T et al (2013) GSK3beta regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. J Clin Invest 123(4):1705–1717PubMedCentralPubMedGoogle Scholar
  34. 34.
    Katayama Y, Battista M et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421PubMedGoogle Scholar
  35. 35.
    Mendez-Ferrer S, Lucas D et al (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447PubMedGoogle Scholar
  36. 36.
    Haylock DN, Williams B et al (2007) Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25(4):1062–1069PubMedGoogle Scholar
  37. 37.
    Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179(5):1677–1682PubMedGoogle Scholar
  38. 38.
    Taichman RS, Reilly MJ et al (1996) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87(2):518–524PubMedGoogle Scholar
  39. 39.
    Visnjic D, Kalajzic I et al (2001) Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res 16(12):2222–2231PubMedGoogle Scholar
  40. 40.
    Visnjic D, Kalajzic Z et al (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9):3258–3264PubMedGoogle Scholar
  41. 41.
    Calvi LM, Adams GB et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846PubMedGoogle Scholar
  42. 42.
    Marusic A, Kalinowski JF et al (1993) Production of leukemia inhibitory factor mRNA and protein by malignant and immortalized bone cells. J Bone Miner Res 8(5):617–624PubMedGoogle Scholar
  43. 43.
    Arai F, Hirao A et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161PubMedGoogle Scholar
  44. 44.
    Jung Y, Wang J et al (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110(1):82–90PubMedGoogle Scholar
  45. 45.
    Qian H, Buza-Vidas N et al (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1(6):671–684PubMedGoogle Scholar
  46. 46.
    Weber JM, Forsythe SR et al (2006) Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone 39(3):485–493PubMedGoogle Scholar
  47. 47.
    Yoshihara H, Arai F et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1(6):685–697PubMedGoogle Scholar
  48. 48.
    Adams GB, Martin RP et al (2007) Therapeutic targeting of a stem cell niche (vol 25, pg 238, 2007). Nat Biotechnol 25(8):944–945Google Scholar
  49. 49.
    Bromberg O, Frisch BJ et al (2012) Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood 120(2):303–313PubMedGoogle Scholar
  50. 50.
    Calvi LM, Sims NA et al (2001) Activated parathyroid hormone/parathyroid hormone–related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 107(3):277–286PubMedCentralPubMedGoogle Scholar
  51. 51.
    Goltzman D (2008) Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone. Arch Biochem Biophys 473(2):218–224PubMedGoogle Scholar
  52. 52.
    Ballen KK, Shpall EJ et al (2007) Phase I trial of parathyroid hormone to facilitate stem cell mobilization. Biol Blood Marrow Transplant 13(7):838–843PubMedGoogle Scholar
  53. 53.
    Brunner S, Theiss HD et al (2007) Primary hyperparathyroidism is associated with increased circulating bone marrow-derived progenitor cells. Am J Physiol Endocrinol Metab 293(6):E1670–E1675PubMedGoogle Scholar
  54. 54.
    Lymperi S, Horwood N et al (2008) Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111(3):1173–1181PubMedGoogle Scholar
  55. 55.
    Schepers K, Hsiao EC et al (2012) Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood 120(17):3425–3435PubMedGoogle Scholar
  56. 56.
    Ma YD, Park C et al (2009) Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model. Blood 114(20):4402–4410PubMedGoogle Scholar
  57. 57.
    Nakamura Y, Arai F et al (2010) Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 116(9):1422–1432PubMedGoogle Scholar
  58. 58.
    Cheng YH, Chitteti BR et al (2011) Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res 26(5):1111–1121PubMedGoogle Scholar
  59. 59.
    Chitteti BR, Cheng YH et al (2010) Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115(16):3239–3248PubMedGoogle Scholar
  60. 60.
    Chitteti BR, Cheng YH et al (2010) Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J Cell Biochem 111(2):284–294PubMedCentralPubMedGoogle Scholar
  61. 61.
    Calvi LM, Bromberg O et al (2012) Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood 119(11):2489–2499PubMedGoogle Scholar
  62. 62.
    Xiao L, Liu P et al (2009) Exported 18-kDa isoform of fibroblast growth factor-2 is a critical determinant of bone mass in mice. J Biol Chem 284(5):3170–3182PubMedGoogle Scholar
  63. 63.
    Yoon KA, Cho HS et al (2012) Differential regulation of CXCL5 by FGF2 in osteoblastic and endothelial niche cells supports hematopoietic stem cell migration. Stem Cells Dev 21:3391–3402PubMedGoogle Scholar
  64. 64.
    Song X, Zhu CH et al (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296(5574):1855–1857PubMedGoogle Scholar
  65. 65.
    Hosokawa K, Arai F et al (2010) Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6(3):194–198PubMedGoogle Scholar
  66. 66.
    Hosokawa K, Arai F et al (2010) Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116(4):554–563PubMedGoogle Scholar
  67. 67.
    Levesque JP (2012) N(o)-cadherin role for HSCs. Blood 120(2):237–238PubMedGoogle Scholar
  68. 68.
    Dominici M, Rasini V et al (2009) Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114(11):2333–2343PubMedGoogle Scholar
  69. 69.
    Greenbaum AM, Revollo LD et al (2012) N-cadherin in osteolineage cells is not required for maintenance of hematopoietic stem cells. Blood 120(2):295–302PubMedGoogle Scholar
  70. 70.
    Frisch BJ, Porter RL et al (2009) In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood 114(19):4054–4063PubMedGoogle Scholar
  71. 71.
    Goessling W, Allen RS et al (2011) Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 8(4):445–458PubMedCentralPubMedGoogle Scholar
  72. 72.
    North TE, Goessling W et al (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447(7147):1007–1011PubMedCentralPubMedGoogle Scholar
  73. 73.
    Porter RL, Georger MA et al (2013) Prostaglandin E2 increases hematopoietic stem cell survival and accelerates hematopoietic recovery after radiation injury. Stem Cells 31(2):372–383PubMedGoogle Scholar
  74. 74.
    Sugimura R, He XC et al (2012) Noncanonical wnt signaling maintains hematopoietic stem cells in the niche. Cell 150(2):351–365PubMedGoogle Scholar
  75. 75.
    Bedi B, Li JY et al (2012) Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci USA 109(12):E725–E733PubMedGoogle Scholar
  76. 76.
    Tawfeek H, Bedi B et al (2010) Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS One 5(8):e12290PubMedCentralPubMedGoogle Scholar
  77. 77.
    Terauchi M, Li JY et al (2009) T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab 10(3):229–240PubMedCentralPubMedGoogle Scholar
  78. 78.
    Li JY, Adams J et al (2012) PTH expands short-term murine hemopoietic stem cells through T cells. Blood 120(22):4352–4362PubMedGoogle Scholar
  79. 79.
    Fulciniti M, Tassone P et al (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114(2):371–379PubMedGoogle Scholar
  80. 80.
    Qiang YW, Chen Y et al (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112(1):196–207PubMedGoogle Scholar
  81. 81.
    Vallet S, Pozzi S et al (2011) A novel role for CCL3 (MIP-1alpha) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia 25(7):1174–1181PubMedGoogle Scholar
  82. 82.
    Colmone A, Amorim M et al (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322(5909):1861–1865PubMedGoogle Scholar
  83. 83.
    Frisch BJ, Ashton JM et al (2012) Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119(2):540–550PubMedGoogle Scholar
  84. 84.
    Shiozawa Y, Pedersen EA et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312PubMedCentralPubMedGoogle Scholar
  85. 85.
    Simmons PJ, Torok-Storb B (1991) CD34 expression by stromal precursors in normal human adult bone marrow. Blood 78(11):2848–2853PubMedGoogle Scholar
  86. 86.
    Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62PubMedGoogle Scholar
  87. 87.
    Park D, Spencer JA et al (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10(3):259–272PubMedCentralPubMedGoogle Scholar
  88. 88.
    Masuda S, Ageyama N et al (2009) Cotransplantation with MSCs improves engraftment of HSCs after autologous intra-bone marrow transplantation in nonhuman primates. Exp Hematol 37(10):1250–1257PubMedGoogle Scholar
  89. 89.
    Ahn JY, Park G et al (2010) Intramarrow injection of beta-catenin-activated, but not naive mesenchymal stromal cells stimulates self-renewal of hematopoietic stem cells in bone marrow. Exp Mol Med 42(2):122–131PubMedGoogle Scholar
  90. 90.
    Sacchetti B, Funari A et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedGoogle Scholar
  91. 91.
    McNiece I, Harrington J et al (2004) Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 6(4):311–317PubMedGoogle Scholar
  92. 92.
    Robinson SN, Ng J et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37(4):359–366PubMedCentralPubMedGoogle Scholar
  93. 93.
    de Lima M, McNiece I et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367(24):2305–2315PubMedCentralPubMedGoogle Scholar
  94. 94.
    Pinho S, Lacombe J et al (2013) PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210:1351–1367PubMedCentralPubMedGoogle Scholar
  95. 95.
    Nie Y, Han YC et al (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205(4):777–783PubMedCentralPubMedGoogle Scholar
  96. 96.
    Tzeng YS, Li H et al (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117(2):429–439PubMedGoogle Scholar
  97. 97.
    Ara T, Itoi M et al (2003) A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 170(9):4649–4655PubMedGoogle Scholar
  98. 98.
    Bonig H, Priestley GV et al (2004) PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood 104(8):2299–2306PubMedGoogle Scholar
  99. 99.
    Kawabata K, Ujikawa M et al (1999) A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci USA 96(10):5663–5667PubMedGoogle Scholar
  100. 100.
    Peled A, Petit I et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283(5403):845–848PubMedGoogle Scholar
  101. 101.
    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235PubMedCentralPubMedGoogle Scholar
  102. 102.
    Greenbaum A, Hsu YM et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230PubMedCentralPubMedGoogle Scholar
  103. 103.
    Ding L, Saunders TL et al (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462PubMedCentralPubMedGoogle Scholar
  104. 104.
    Chen MJ, Yokomizo T et al (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457(7231):887–891PubMedCentralPubMedGoogle Scholar
  105. 105.
    Kiel MJ, Yilmaz OH et al (2008) CD150 cells are transiently reconstituting multipotent progenitors with little or no stem cell activity. Blood 111(8):4413–4414 author reply 4414–4415PubMedGoogle Scholar
  106. 106.
    Butler JM, Nolan DJ et al (2010) Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6(3):251–264PubMedCentralPubMedGoogle Scholar
  107. 107.
    Chute JP, Muramoto GG et al (2006) Molecular profile and partial functional analysis of novel endothelial cell-derived growth factors that regulate hematopoiesis. Stem Cells 24(5):1315–1327PubMedGoogle Scholar
  108. 108.
    Kobayashi H, Butler JM et al (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12(11):1046–1056PubMedCentralPubMedGoogle Scholar
  109. 109.
    Hooper AT, Butler JM et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4(3):263–274PubMedCentralPubMedGoogle Scholar
  110. 110.
    Winkler IG, Barbier V et al (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18(11):1651–1657PubMedGoogle Scholar
  111. 111.
    Barker JE (1994) Sl/Sld hematopoietic progenitors are deficient in situ. Exp Hematol 22(2):174–177PubMedGoogle Scholar
  112. 112.
    Barker JE (1997) Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol 25(6):542–547PubMedGoogle Scholar
  113. 113.
    Yamazaki S, Iwama A et al (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113(6):1250–1256PubMedGoogle Scholar
  114. 114.
    Yamazaki S, Ema H et al (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158PubMedGoogle Scholar
  115. 115.
    Kirkland JL, Tchkonia T et al (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37(6):757–767PubMedGoogle Scholar
  116. 116.
    Rosen CJ, Ackert-Bicknell C et al (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124PubMedCentralPubMedGoogle Scholar
  117. 117.
    Berkahn L, Keating A (2004) Hematopoiesis in the elderly. Hematology 9(3):159–163PubMedGoogle Scholar
  118. 118.
    Van Zant G, Liang Y (2012) Concise review: hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med 1(9):651–657PubMedCentralPubMedGoogle Scholar
  119. 119.
    DiMascio L, Voermans C et al (2007) Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 178(6):3511–3520PubMedGoogle Scholar
  120. 120.
    Berner HS, Lyngstadaas SP et al (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35(4):842–849PubMedGoogle Scholar
  121. 121.
    Naveiras O, Nardi V et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263PubMedCentralPubMedGoogle Scholar
  122. 122.
    Lymperi S, Ersek A et al (2011) Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117(5):1540–1549PubMedGoogle Scholar
  123. 123.
    Mansour A, Abou-Ezzi G et al (2012) Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med 209(3):537–549PubMedCentralPubMedGoogle Scholar
  124. 124.
    Adams GB, Chabner KT et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076):599–603PubMedGoogle Scholar
  125. 125.
    Christopher MJ, Liu F et al (2009) Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 114(7):1331–1339PubMedGoogle Scholar
  126. 126.
    Levesque JP, Hendy J et al (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111(2):187–196PubMedCentralPubMedGoogle Scholar
  127. 127.
    Petit I, Szyper-Kravitz M et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. [Erratum appears in Nat Immunol 2002;3(8):787]. Nat Immunol 3(7):687–694PubMedGoogle Scholar
  128. 128.
    Semerad CL, Christopher MJ et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106(9):3020–3027PubMedGoogle Scholar
  129. 129.
    Kollet O, Dar A et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12(6):657–664PubMedGoogle Scholar
  130. 130.
    Miyamoto K, Yoshida S et al (2011) Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med 208(11):2175–2181PubMedCentralPubMedGoogle Scholar
  131. 131.
    Winkler IG, Barbier V et al (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116(3):375–385PubMedGoogle Scholar
  132. 132.
    Winkler IG, Sims NA et al (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828PubMedGoogle Scholar
  133. 133.
    Yona S, Kim KW et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91PubMedGoogle Scholar
  134. 134.
    Alexander KA, Chang MK et al (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532PubMedGoogle Scholar
  135. 135.
    Chow A, Lucas D et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271PubMedCentralPubMedGoogle Scholar
  136. 136.
    Ludin A, Itkin T et al (2012) Monocytes–macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13(11):1072–1082PubMedGoogle Scholar
  137. 137.
    Chow A, Huggins M et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4):429–436PubMedGoogle Scholar
  138. 138.
    Westerterp M, Gourion-Arsiquaud S et al (2012) Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11(2):195–206PubMedCentralPubMedGoogle Scholar
  139. 139.
    Liu F, Poursine-Laurent J et al (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95(10):3025–3031PubMedGoogle Scholar
  140. 140.
    Christopher MJ, Rao M et al (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208(2):251–260PubMedCentralPubMedGoogle Scholar
  141. 141.
    Heissig B, Hattori K et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637PubMedCentralPubMedGoogle Scholar
  142. 142.
    Levesque JP, Takamatsu Y et al (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5):1289–1297PubMedGoogle Scholar
  143. 143.
    Levesque JP, Liu F et al (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104(1):65–72PubMedGoogle Scholar
  144. 144.
    Singh P, Hu P et al (2012) Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia 26(11):2375–2383PubMedCentralPubMedGoogle Scholar
  145. 145.
    Boneberg EM, Hareng L et al (2000) Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95(1):270–276PubMedGoogle Scholar
  146. 146.
    Wang Y, Wan C et al (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117(6):1616–1626PubMedCentralPubMedGoogle Scholar
  147. 147.
    Rankin EB, Wu C et al (2012) The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149(1):63–74PubMedCentralPubMedGoogle Scholar
  148. 148.
    Forristal CE, Winkler IG et al (2013) Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 121(5):759–769PubMedGoogle Scholar
  149. 149.
    Takubo K, Goda N et al (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7(3):391–402PubMedGoogle Scholar
  150. 150.
    Levesque JP, Winkler IG et al (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25(8):1954–1965PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine and DentistryUniversity of RochesterRochesterUSA
  2. 2.Division of Oncology, Department of MedicineWashington University School of MedicineSt. LouisUSA

Personalised recommendations