Calcified Tissue International

, Volume 93, Issue 6, pp 556–564

FGF23 Affects the Lineage Fate Determination of Mesenchymal Stem Cells

  • Yan Li
  • Xu He
  • Hannes Olauson
  • Tobias E. Larsson
  • Urban Lindgren
Original Research


FGF23 is a bone-derived hormone that regulates mineral metabolism by inhibiting renal tubular phosphate reabsorption and suppressing circulating 1,25(OH)2D and PTH levels. These effects are mediated by FGF-receptor binding and activation in the presence of its coreceptor Klotho, which is expressed in the distal tubules of the kidney. Recently, expression of Klotho in skeletal tissues has been reported, indicating a direct, yet unclear, extrarenal effect of FGF23 on cells involved with bone development and remodeling. In the present study, we found that bone marrow stromal cells harvested from Klotho null mice developed fewer osteoblastic but more adipocytic colonies than cells from wild-type mice. The underlying mechanism was explored by experiments on mouse C3H10T1/2 cells. We found that Klotho was weakly expressed and that FGF23 dose-dependently affected the lineage fate determination. The effects of FGF23 on cell differentiation can be diminished by SU 5402, a specific tyrosine kinase inhibitor for FGF receptors. Our results indicate that FGF23 directly affects the differentiation of bone marrow stromal cells.


Adipocyte Age Aging Osteoblast Cell differentiation Osteoporosis Pathogenesis 


  1. 1.
    Ubaidus S, Li M, Sultana S, de Freitas PH, Oda K, Maeda T, Takagi R, Amizuka N (2009) FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. J Electron Microsc (Tokyo) 58:381–392CrossRefGoogle Scholar
  2. 2.
    Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF23. Bone 40:1565–1573PubMedCrossRefGoogle Scholar
  3. 3.
    Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, Westin G, Larsson TE (2007) Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195:125–131PubMedCrossRefGoogle Scholar
  4. 4.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008PubMedGoogle Scholar
  5. 5.
    Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774PubMedCrossRefGoogle Scholar
  6. 6.
    Kuro-o M (2006) Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 15:437–441PubMedCrossRefGoogle Scholar
  7. 7.
    Fukumoto S (2008) Actions and mode of actions of FGF19 subfamily members. Endocr J 55:23–31PubMedCrossRefGoogle Scholar
  8. 8.
    Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of FGF23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568PubMedGoogle Scholar
  9. 9.
    Yoshida T, Fujimori T, Nabeshima Y (2002) Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous Klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 143:683–689PubMedCrossRefGoogle Scholar
  10. 10.
    Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 281:6120–6123PubMedCrossRefGoogle Scholar
  11. 11.
    ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348CrossRefGoogle Scholar
  12. 12.
    Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Juppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663PubMedCrossRefGoogle Scholar
  13. 13.
    Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schuler C, Erben RG, Lanske B (2008) Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet 4:e1000154PubMedCrossRefGoogle Scholar
  14. 14.
    Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE, Bellido T (2011) Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49:636–643PubMedCrossRefGoogle Scholar
  15. 15.
    Raimann A, Ertl DA, Helmreich M, Sagmeister S, Egerbacher M, Haeusler G (2013) Fibroblast growth factor 23 and Klotho are present in the growth plate. Connect Tissue Res 54:108–117PubMedCrossRefGoogle Scholar
  16. 16.
    Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154PubMedCrossRefGoogle Scholar
  17. 17.
    Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171PubMedCrossRefGoogle Scholar
  18. 18.
    Li Y, He X, He J, Anderstam B, Andersson G, Lindgren U (2011) Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: a possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J Bone Miner Res 26:2656–2664PubMedCrossRefGoogle Scholar
  19. 19.
    Kawaguchi H, Manabe N, Chikuda H, Nakamura K, Kuroo M (2000) Cellular and molecular mechanism of low-turnover osteopenia in the Klotho-deficient mouse. Cell Mol Life Sci 57:731–737PubMedCrossRefGoogle Scholar
  20. 20.
    DeLuca S, Sitara D, Kang K, Marsell R, Jonsson K, Taguchi T, Erben RG, Razzaque MS, Lanske B (2008) Amelioration of the premature ageing-like features of FGF-23 knockout mice by genetically restoring the systemic actions of FGF-23. J Pathol 216:345–355PubMedCrossRefGoogle Scholar
  21. 21.
    Olauson H, Lindberg K, Amin R, Jia T, Wernerson A, Andersson G, Larsson TE (2012) Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism. J Am Soc Nephrol 23:1641–1651PubMedCrossRefGoogle Scholar
  22. 22.
    Daniel WW (1995) Biostatistics: a foundation for analysis in the health sciences. Wiley, New YorkGoogle Scholar
  23. 23.
    Montgomery DC (1991) Design and analysis of experiments. Wiley, New YorkGoogle Scholar
  24. 24.
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature 390:45–51PubMedCrossRefGoogle Scholar
  25. 25.
    Hume DA, Allan W, Golder J, Stephens RW, Doe WF, Warren HS (1985) Preparation and characterization of human bone marrow-derived macrophages. J Leukoc Biol 38:541–552PubMedGoogle Scholar
  26. 26.
    Ortega E, Garcia JJ, De la Fuente M (2000) Modulation of adherence and chemotaxis of macrophages by norepinephrine. Influence of ageing. Mol Cell Biochem 203:113–117PubMedCrossRefGoogle Scholar
  27. 27.
    Phinney DG, Kopen G, Isaacson RL, Prockop DJ (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72:570–585PubMedCrossRefGoogle Scholar
  28. 28.
    Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K (2004) Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 29:91–99PubMedCrossRefGoogle Scholar
  29. 29.
    Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050–2064PubMedCrossRefGoogle Scholar
  30. 30.
    Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960PubMedCrossRefGoogle Scholar
  31. 31.
    Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, Ritz E, Kronenberg F, Kuen E, Konig P, Kraatz G, Mann JF, Muller GA, Kohler H, Riegler P (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kidney disease (MMKD) study. J Am Soc Nephrol 18:2600–2608PubMedCrossRefGoogle Scholar
  32. 32.
    Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359:584–592PubMedCrossRefGoogle Scholar
  33. 33.
    Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119:2545–2552PubMedCrossRefGoogle Scholar
  34. 34.
    Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH (2010) FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transpl 25:3983–3989CrossRefGoogle Scholar
  35. 35.
    Mirza MA, Karlsson MK, Mellstrom D, Orwoll E, Ohlsson C, Ljunggren O, Larsson TE (2011) Serum fibroblast growth factor-23 (FGF23) and fracture risk in elderly men. J Bone Miner Res 26:857–864PubMedCrossRefGoogle Scholar
  36. 36.
    Mirza MA, Alsio J, Hammarstedt A, Erben RG, Michaelsson K, Tivesten A, Marsell R, Orwoll E, Karlsson MK, Ljunggren O, Mellstrom D, Lind L, Ohlsson C, Larsson TE (2011) Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arter Thromb Vasc Biol 31:219–227CrossRefGoogle Scholar
  37. 37.
    Mirza MA, Hansen T, Johansson L, Ahlstrom H, Larsson A, Lind L, Larsson TE (2009) Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transpl 24:3125–3131CrossRefGoogle Scholar
  38. 38.
    Mirza MA, Larsson A, Lind L, Larsson TE (2009) Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 205:385–390PubMedCrossRefGoogle Scholar
  39. 39.
    Chung UI, Kawaguchi H, Takato T, Nakamura K (2004) Distinct osteogenic mechanisms of bones of distinct origins. J Orthop Sci 9:410–414PubMedCrossRefGoogle Scholar
  40. 40.
    Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948PubMedCrossRefGoogle Scholar
  41. 41.
    Shalhoub V, Ward SC, Sun B, Stevens J, Renshaw L, Hawkins N, Richards WG (2011) Fibroblast growth factor 23 (FGF23) and alpha-Klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcif Tissue Int 89:140–150PubMedCrossRefGoogle Scholar
  42. 42.
    Kawai M, Kinoshita S, Kimoto A, Hasegawa Y, Miyagawa K, Yamazaki M, Ohata Y, Ozono K, Michigami T (2013) FGF23 suppresses chondrocyte proliferation in the presence of soluble alpha-Klotho both in vitro and in vivo. J Biol Chem 288:2414–2427PubMedCrossRefGoogle Scholar
  43. 43.
    Marsell R, Mirza MA, Mallmin H, Karlsson M, Mellstrom D, Orwoll E, Ohlsson C, Jonsson KB, Ljunggren O, Larsson TE (2009) Relation between fibroblast growth factor-23, body weight and bone mineral density in elderly men. Osteoporos Int 20:1167–1173PubMedCrossRefGoogle Scholar
  44. 44.
    Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679PubMedGoogle Scholar
  45. 45.
    Helms JA, Schneider RA (2003) Cranial skeletal biology. Nature 423:326–331PubMedCrossRefGoogle Scholar
  46. 46.
    Oklund SA, Prolo DJ, Gutierrez RV, King SE (1986) Quantitative comparisons of healing in cranial fresh autografts, frozen autografts and processed autografts, and allografts in canine skull defects. Clin Orthop Relat Res 205:269–291PubMedGoogle Scholar
  47. 47.
    Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38:758–768PubMedCrossRefGoogle Scholar
  48. 48.
    van den Bos T, Speijer D, Bank RA, Bromme D, Everts V (2008) Differences in matrix composition between calvaria and long bone in mice suggest differences in biomechanical properties and resorption: special emphasis on collagen. Bone 43:459–468PubMedCrossRefGoogle Scholar
  49. 49.
    Blair HC, Zaidi M, Schlesinger PH (2002) Mechanisms balancing skeletal matrix synthesis and degradation. Biochem J 364:329–341PubMedCrossRefGoogle Scholar
  50. 50.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238PubMedCrossRefGoogle Scholar
  51. 51.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887PubMedCrossRefGoogle Scholar
  52. 52.
    Winkler DG, Sutherland MS, Ojala E, Turcott E, Geoghegan JC, Shpektor D, Skonier JE, Yu C, Latham JA (2005) Sclerostin inhibition of Wnt-3a-induced C3H10T1/2 cell differentiation is indirect and mediated by bone morphogenetic proteins. J Biol Chem 280:2498–2502PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yan Li
    • 1
    • 2
  • Xu He
    • 1
    • 3
  • Hannes Olauson
    • 4
  • Tobias E. Larsson
    • 4
  • Urban Lindgren
    • 1
  1. 1.Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
  2. 2.Department of Orthopedic SurgeryKarolinska University HospitalStockholmSweden
  3. 3.The Key Laboratory of Pathobiology, The Ministry of EducationJilin UniversityChangchunChina
  4. 4.Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstituteStockholmSweden

Personalised recommendations