Calcified Tissue International

, Volume 93, Issue 2, pp 121–132 | Cite as

Involvement of WNT/β-catenin Signaling in the Treatment of Osteoporosis

Review

Abstract

Osteoblast differentiation is predominantly regulated by the WNT/β-catenin signaling (canonical WNT pathway), which, together with bone morphogenetic proteins, acts as the master regulator of osteogenesis. The recent characterization of the canonical WNT pathway in the regulation of bone modeling and remodeling provided important insights for our understanding of the pathophysiology of a number of conditions and of the mechanism of action of hormones or drugs with important effect on bone metabolism. This review is mainly focused on the growing therapeutic implications of these new findings. WNT/β-catenin signaling plays a key role in bone tissue by determining the differentiation of stem cells into mature osteoblasts rather than into chondrocytes and adipocytes. Its regulation is predominantly driven by the production of two WNT signaling antagonists: sclerostin (SOST) and Dickkopf-related protein 1 (DKK1). The most proximate regulator of SOST expression by osteocytes and its serum levels is bone mechanical load. SOST expression is increased with advancing age, by glucocorticoid treatment and during treatment with antiresorptive agents such as bisphosphonates and denosumab, while it is decreased by parathyroid hormone excess or administration of estrogens. Correlation between DKK1 serum levels and bone formation in various pathological conditions or during osteoporosis treatment has been reported. Inhibitors of the negative regulators of WNT/β-catenin signaling (“inhibiting the endogenous inhibitors”) are potential candidates for the prevention and treatment of bone loss. Inactivating monoclonal antibodies against SOST appears to be the most attractive strategy because SOST is the only component of the WNT pathway expressed almost exclusively by osteocytes.

Keywords

Osteoblast Osteoclast Osteocyte Osteoporosis WNT signaling 

References

  1. 1.
    Baron R, Rawadi G (2007) Minireview: targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148:2635–2643PubMedCrossRefGoogle Scholar
  2. 2.
    Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916PubMedCrossRefGoogle Scholar
  3. 3.
    Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and WNT signaling in osteoblast development. Development 132:49–60PubMedCrossRefGoogle Scholar
  4. 4.
    Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical WNT signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3234PubMedCrossRefGoogle Scholar
  5. 5.
    Day TF, Guo X, Garrett-Beal L, Yang Y (2005) WNT/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750PubMedCrossRefGoogle Scholar
  6. 6.
    Hill TP, Später D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/betacatenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738PubMedCrossRefGoogle Scholar
  7. 7.
    Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, Strotmeyer ES, Resnick HE, Carbone L, Beamer BA, Park SW, Lane NE, Harris TB, Cummings SR (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRefGoogle Scholar
  8. 8.
    Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY, Takeyama K, Nakamura T, Mezaki Y, Takezawa S, Yogiashi Y, Kitagawa H, Yamada G, Takada S, Minami Y, Shibuya H, Matsumoto K, Kato S (2007) A histone lysine methyltransferase activated by non-canonical WNT signalig suppresses PPAr-gamma transactivation. Nat Cell Biol 9:1273–1285PubMedCrossRefGoogle Scholar
  9. 9.
    Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by WNT10b. Proc Natl Acad Sci USA 102:3324–3329PubMedCrossRefGoogle Scholar
  10. 10.
    Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG (2006) Wnt signalig in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 119:1283–1296PubMedCrossRefGoogle Scholar
  11. 11.
    Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical WNT signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764PubMedCrossRefGoogle Scholar
  12. 12.
    Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95:2248–2253PubMedCrossRefGoogle Scholar
  13. 13.
    Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, Zwart SR, Smith SM (2012) Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97:E1736–E1740PubMedCrossRefGoogle Scholar
  14. 14.
    Ardawi MS, Al-Kadi HA, Rouzi AA, Qari MH (2011) Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Mineral Res 26:2812–2822CrossRefGoogle Scholar
  15. 15.
    Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K, Tomaschitz A, Pieber TR, Fahrleitner-Pammer A (2012) Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J Clin Endocrinol Metab 97:148–154PubMedCrossRefGoogle Scholar
  16. 16.
    Sheng Z, Tong D, Ou Y, Zhang H, Zhang Z, Li S, Zhou J, Zhang J, Liao E (2012) Serum sclerostin levels were positively correlated with fat mass and bone mineral density in central south Chinese postmenopausal women. Clin Endocrinol 76:797–801CrossRefGoogle Scholar
  17. 17.
    García-Martín A, Rozas-Moreno P, Reyes-García R, Morales-Santana S, García-Fontana B, García-Salcedo JA, Muñoz-Torres M (2012) Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 97:234–241PubMedCrossRefGoogle Scholar
  18. 18.
    Caetano-Lopes J, Lopes A, Rodrigues A, Fernandes D, Perpétuo IP, Monjardino T, Lucas R, Monteiro J, Konttinen YT, Canhão H, Fonseca JE (2011) Upregulation of inflammatory genes and downregulation of sclerostin gene expression are key elements in the early phase of fragility fracture healing. PLoS ONE 6:e16947PubMedCrossRefGoogle Scholar
  19. 19.
    Ardawi MS, Al-Sibiany AM, Bakhsh TM, Rouzi AA, Qari MH (2012) Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos Int 23:1789–1797PubMedCrossRefGoogle Scholar
  20. 20.
    van Lierop AH, Witteveen JE, Hamdy NAT, Papapoulos SE (2010) Patients with primary hyperparathyroidism have lower circulating levels than euparathyroid controls. Eur J Endocrinol 163:833–837PubMedCrossRefGoogle Scholar
  21. 21.
    Viapiana O, Fracassi E, Troplini S, Idolazzi L, Rossini M, Adami S, Gatti D (2013) Sclerostin and DKK1 in primary hyperparathyroidism. Calcif Tissue Int 92:324–329PubMedCrossRefGoogle Scholar
  22. 22.
    Cejka D, Herberth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D, Haas M, Malluche HH (2011) Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 6:877–882PubMedCrossRefGoogle Scholar
  23. 23.
    Sutherland MK, Geoghegan JC, Yu C, Winkler DG, Latham JA (2004) Unique regulation of SOST, the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts. Bone 35:448–454PubMedCrossRefGoogle Scholar
  24. 24.
    Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO, Lane NE (2008) Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum 58:3485–3497PubMedCrossRefGoogle Scholar
  25. 25.
    van Lierop AH, van der Eerden AW, Hamdy NA, Hermus AR, den Heijer M, Papapoulos SE (2012) Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J Clin Endocrinol Metab 97:E1953–E1957PubMedCrossRefGoogle Scholar
  26. 26.
    Achiou Z (2012) Osteocyte apoptosis induced by glucocorticoids is prevented and reversed by anti-sclerostin antibody in a male rat model. J Bone Mineral Res 27:s467Google Scholar
  27. 27.
    Mirza FS, Padhi ID, Raisz LG, Lorenzo JA (2010) Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95:1991–1997PubMedCrossRefGoogle Scholar
  28. 28.
    Mödder UI, Roforth MM, Hoey K, McCready LK, Peterson JM, Monroe DG, Oursler MJ, Khosla S (2011) Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone 49:202–207PubMedCrossRefGoogle Scholar
  29. 29.
    Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Ominsky MS, Zhu Ke H, Li X, Richards WG (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39:754–766PubMedCrossRefGoogle Scholar
  30. 30.
    Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494PubMedCrossRefGoogle Scholar
  31. 31.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163PubMedCrossRefGoogle Scholar
  32. 32.
    Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, Li ZG (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38:821–827PubMedCrossRefGoogle Scholar
  33. 33.
    Rossini M, Bagnato G, Frediani B, Iagnocco A, La Montagna G, Minisola G, Caminiti M, Varenna M, Adami S (2011) Relationship of focal erosions, bone mineral density, and parathyroid hormone in rheumatoid arthritis. J Rheumatol 38:997–1002PubMedCrossRefGoogle Scholar
  34. 34.
    Orsolini G, Povino MR, Tripi G, Caimmi C, Lippolis I, Idolazzi L, Fracassi E, Viapiana O, Gatti D, Rossini M, Adami S (2012) Correlation between serum levels of parathyroid hormone and dickkopf-1 in patients with rheumatoid arthritis. Ann Rheum Dis 71(Suppl 3):654Google Scholar
  35. 35.
    Heiland GR, Appel H, Poddubnyy D, Zwerina J, Hueber A, Haibel H, Baraliakos X, Listing J, Rudwaleit M, Schett G, Sieper J (2012) High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis 71:572–574PubMedCrossRefGoogle Scholar
  36. 36.
    Lane NE, Nevitt MS, Lui LY, de Leon P, Corr M (2007) Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 56:3319–3325PubMedCrossRefGoogle Scholar
  37. 37.
    Senolt L, Hulejova H, Krystufkova O, Forejtova S, Andres Cerezo L, Gatterova J, Pavelka K, Vencovsky J (2012) Low circulating Dickkopf-1 and its link with severity of spinaln involvement in diffuse idiopathic skeletal hyperostosis. Ann Rheum Dis 71:71–74PubMedCrossRefGoogle Scholar
  38. 38.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedCrossRefGoogle Scholar
  39. 39.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521PubMedCrossRefGoogle Scholar
  40. 40.
    Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang Y, Wang Y, Li X, Zhang J, Mao J, Li Z, Zheng J, Li L, Harris S, Wu D (2004) The LRP5 high-bone-mass G171 V mutation disrupts LRP5 interaction with Mesd. Mol Cell Biol 24:4677–4684PubMedCrossRefGoogle Scholar
  42. 42.
    Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R (2006) Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 21:1738–1749PubMedCrossRefGoogle Scholar
  43. 43.
    Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74:866–875PubMedCrossRefGoogle Scholar
  44. 44.
    Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589PubMedCrossRefGoogle Scholar
  45. 45.
    van Lierop AH, Hamdy NA, van Egmond ME, Bakker E, Dikkers FG, Papapoulos SE (2013) Van Buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res 28:848–854PubMedCrossRefGoogle Scholar
  46. 46.
    Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314PubMedCrossRefGoogle Scholar
  47. 47.
    Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, Reddy PS, Bodine PV, Robinson JA, Bhat B, Marzolf J, Moran RA, Bex F (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18:960–974PubMedCrossRefGoogle Scholar
  48. 48.
    Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512PubMedCrossRefGoogle Scholar
  49. 49.
    van Meurs JB, Trikalinos TA, Ralston SH, Balcells S, Brandi ML, Brixen K, Kiel DP, Langdahl BL, Lips P, Ljunggren O, Lorenc R, Obermayer-Pietsch B, Ohlsson C, Pettersson U, Reid DM, Rousseau F, Scollen S, Van Hul W, Agueda L, Akesson K, Benevolenskaya LI, Ferrari SL, Hallmans G, Hofman A, Husted LB, Kruk M, Kaptoge S, Karasik D, Karlsson MK, Lorentzon M, Masi L, McGuigan FE, Mellström D, Mosekilde L, Nogues X, Pols HA, Reeve J, Renner W, Rivadeneira F, van Schoor NM, Weber K, Ioannidis JP, Uitterlinden AG (2008) Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299:1277–1290PubMedCrossRefGoogle Scholar
  50. 50.
    Uitterlinden AG, Arp PP, Paeper BW, Charmley P, Proll S, Rivadeneira F, Fang Y, van Meurs JB, Britschgi TB, Latham JA, Schatzman RC, Pols HA, Brunkow ME (2004) Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am J Hum Genet 75:1032–1045PubMedCrossRefGoogle Scholar
  51. 51.
    Zheng HF, Tobias JH, Duncan E, Evans DM, Eriksson J, Paternoster L, Yerges-Armstrong LM, Lehtimäki T, Bergström U, Kähönen M, Leo PJ, Raitakari O, Laaksonen M, Nicholson GC, Viikari J, Ladouceur M, Lyytikäinen LP, Medina-Gomez C, Rivadeneira F, Prince RL, Sievanen H, Leslie WD, Mellström D, Eisman JA, Movérare-Skrtic S, Goltzman D, Hanley DA, Jones G, St Pourcain B, Xiao Y, Timpson NJ, Smith GD, Reid IR, Ring SM, Sambrook PN, Karlsson M, Dennison EM, Kemp JP, Danoy P, Sayers A, Wilson SG, Nethander M, McCloskey E, Vandenput L, Eastell R, Liu J, Spector T, Mitchell BD, Streeten EA, Brommage R, Pettersson-Kymmer U, Brown MA, Ohlsson C, Richards JB, Lorentzon M (2012) WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. PLoS Genet 8:e1002745PubMedCrossRefGoogle Scholar
  52. 52.
    Medina-Gomez C, Kemp JP, Estrada K, Eriksson J, Liu J, Reppe S, Evans DM, Heppe DH, Vandenput L, Herrera L, Ring SM, Kruithof CJ, Timpson NJ, Zillikens MC, Olstad OK, Zheng HF, Richards JB, St Pourcain B, Hofman A, Jaddoe VW, Smith GD, Lorentzon M, Gautvik KM, Uitterlinden AG, Brommage R, Ohlsson C, Tobias JH, Rivadeneira F (2012) Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet 8:e1002718PubMedCrossRefGoogle Scholar
  53. 53.
    Baker-Lepain JC, Lynch JA, Parimi N, McCulloch CE, Nevitt MC, Corr M, Lane NE (2012) Variant alleles of the Wnt antagonist FRZB are determinants of hip shape and modify the relationship between hip shape and osteoarthritis. Arthritis Rheum 64:1457–1465PubMedCrossRefGoogle Scholar
  54. 54.
    Castano Betancourt MC, Cailotto F, Kerkhof HJ, Cornelis FM, Doherty SA, Hart DJ, Hofman A, Luyten FP, Maciewicz RA, Mangino M, Metrustry S, Muir K, Peters MJ, Rivadeneira F, Wheeler M, Zhang W, Arden N, Spector TD, Uitterlinden AG, Doherty M, Lories RJ, Valdes AM, van Meurs JB (2012) Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci USA 109:8218–8223PubMedCrossRefGoogle Scholar
  55. 55.
    Tobias JH (2012) Wnt signalling and the genetics of osteoarthritis. IBMS BoneKEy 9:220CrossRefGoogle Scholar
  56. 56.
    Mödder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton LJ 3rd, Khosla S (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26:373–379PubMedCrossRefGoogle Scholar
  57. 57.
    Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720–31728PubMedCrossRefGoogle Scholar
  58. 58.
    Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D (2013) The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 8:819–823PubMedCrossRefGoogle Scholar
  59. 59.
    Ardawi MS, Rouzi AA, Al-Sibiani SA, Al-Senani NS, Qari MH, Mousa SA (2012) High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study. J Bone Mineral Res 27:2592–2602CrossRefGoogle Scholar
  60. 60.
    Arasu A, Cawthon PM, Lui LY, Do TP, Arora PS, Cauley JA, Ensrud KE, Cummings SR, Study of Osteoporotic Fractures Research Group (2012) Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab 97:2027–2032PubMedCrossRefGoogle Scholar
  61. 61.
    Szulc P, Bertholon C, Borel O, Marchand F, Chapurlat R (2013) Lower fracture risk in older men with higher sclerostin concentration: a prospective analysis from the MINOS study. J Bone Miner Res 28:855–864PubMedCrossRefGoogle Scholar
  62. 62.
    Polyzos SA, Anastasilakis AD, Bratengeier C, Woloszczuk W, Papatheodorou A, Terpos E (2012) Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women—the 6-month effect of risedronate and teriparatide. Osteoporos Int 23:1171–1176PubMedCrossRefGoogle Scholar
  63. 63.
    Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24:489–494PubMedCrossRefGoogle Scholar
  64. 64.
    Yavropoulou MP, van Lierop AH, Hamdy NA, Rizzoli R, Papapoulos SE (2012) Serum sclerostin levels in Paget’s disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone 51:153–157PubMedCrossRefGoogle Scholar
  65. 65.
    Mödder UI, Clowes JA, Hoey K, Peterson JM, McCready L, Oursler MJ, Riggs BL, Khosla S (2011) Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Mineral Res 26:27–34CrossRefGoogle Scholar
  66. 66.
    Chung YE, Lee SH, Lee SY, Kim SY, Kim HH, Mirza FS, Lee SK, Lorenzo JA, Kim GS, Koh JM (2012) Long-term treatment with raloxifene, but not bisphosphonates, reduces circulating sclerostin levels in postmenopausal women. Osteoporos Int 23:1235–1243PubMedCrossRefGoogle Scholar
  67. 67.
    Gatti D, Viapiana O, Adami S, Idolazzi L, Fracassi E, Rossini M (2012) Bisphosphonate treatment of postmenopausal osteoporosis is associated with a dose dependent increase in serum sclerostin. Bone 50:739–742PubMedCrossRefGoogle Scholar
  68. 68.
    Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105:20764–20769PubMedCrossRefGoogle Scholar
  69. 69.
    Eslami B, Zhou S, Van Eekeren I, LeBoff MS, Glowacki J (2011) Reduced osteoclastogenesis and RANKL expression in marrow from women taking alendronate. Calcif Tissue Int 88:272–280PubMedCrossRefGoogle Scholar
  70. 70.
    Gatti D, Viapiana O, Fracassi E, Idolazzi L, Dartizio C, Povino MR, Adami S, Rossini M (2012) Sclerostin and DKK1 in postmenopausal osteoporosis treated with denosumab. J Bone Miner Res 27:2259–2263PubMedCrossRefGoogle Scholar
  71. 71.
    Drake MT, Srinivasan B, Mödder UI, Peterson JM, McCready LK, Riggs BL, Dwyer D, Stolina M, Kostenuik P, Khosla S (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95:5056–5062PubMedCrossRefGoogle Scholar
  72. 72.
    Yu EW, Kumbhani R, Siwila-Sackman E, Leder BZ (2011) Acute decline in serum sclerostin in response to PTH infusion in heakthy men. J Clin Endocrinol Metab 96:E1848–E1851PubMedCrossRefGoogle Scholar
  73. 73.
    Piemonte S, Romagnoli E, Bratengeier C, Woloszczuk W, Tancredi A, Pepe J, Cipriani C, Minisola S (2012) Serum sclerostin levels decline in postmenopausal women with osteoporosis following treatment with intermittent PTH. J Endocrinol Invest 35:866–868PubMedGoogle Scholar
  74. 74.
    Gatti D, Viapiana O, Idolazzi L, Fracassi E, Rossini M, Adami S (2011) The waning of teriparatide effect on bone formation markers in postmenopausal osteoporosis is associated with increasing serum levels of DKK1. J Clin Endocrinol Metab 96:1555–1559PubMedCrossRefGoogle Scholar
  75. 75.
    Rybchyn MS, Slater M, Conigrave AD, Mason RS (2011) An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem 286:23771–23779PubMedCrossRefGoogle Scholar
  76. 76.
    van Bezooijen RL, Dijke P, Papapoulos SE, Lowik CW (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16:319–327PubMedCrossRefGoogle Scholar
  77. 77.
    Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844PubMedGoogle Scholar
  78. 78.
    Moester MJC, Papapoulos SE, Lowik CWGM, van Bezooijen RL (2010) Sclerostin: current knowledge and future perspective. Calcif Tissue Int 87:99–107PubMedCrossRefGoogle Scholar
  79. 79.
    Li X, Ominsky MS, Warmington KS et al (2009) Sclerostin antibody treatment increases bone formation, bone mass and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588PubMedCrossRefGoogle Scholar
  80. 80.
    Li X, Warmington KS, Niu QT, Asuncion FJ, Barrero M, Grisanti M, Dwyer D, Stouch B, Thway TM, Stolina M, Ominsky MS, Kostenuik PJ, Simonet WS, Paszty C, Ke HZ (2010) Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res 25:2647–2656PubMedCrossRefGoogle Scholar
  81. 81.
    Tian X, Setterberg RB, Li X, Paszty C, Ke HZ, Jee WS (2010) Treatment with a sclerostin antibody increases cancellous bone formation and bone mass regardless of marrow composition in adult female rats. Bone 47:529–533PubMedCrossRefGoogle Scholar
  82. 82.
    Agholme F, Li X, Isaksson H, Ke HZ, Aspenberg P (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J Bone Miner Res 25:2412–2418PubMedCrossRefGoogle Scholar
  83. 83.
    Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, Asuncion FJ, Dwyer D, Han CY, Vlasseros F, Samadfam R, Jolette J, Smith SY, Stolina M, Lacey DL, Simonet WS, Paszty C, Li G, Ke HZ (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Mineral Res 26:1012–1021CrossRefGoogle Scholar
  84. 84.
    Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869PubMedCrossRefGoogle Scholar
  85. 85.
    McDonald MM, Morse A, Mikulec K, Peacock L, Yu N, Baldock PA, Birke O, Liu M, Ke HZ, Little DG (2012) Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res 30:1541–1548PubMedCrossRefGoogle Scholar
  86. 86.
    Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25:948–959PubMedCrossRefGoogle Scholar
  87. 87.
    Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26PubMedCrossRefGoogle Scholar
  88. 88.
    Chen P, Satterwhite JH, Licata AA, Lewiecki EM, Sipos AA, Misurski DM, Wagman RB (2005) Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res 20:962–970PubMedCrossRefGoogle Scholar
  89. 89.
    Rubin MR, Bilezikian JP (2003) The anabolic effects of parathyroid hormone therapy. Clin Geriatr Med 19:415–432PubMedCrossRefGoogle Scholar
  90. 90.
    McClung MR, Grauer A, Boonen S, Brown JP, Diez-Perez A, Langdahl B, Reginster JY, Zanchetta JR, Katz L, Maddox J, Yang YC, Libanati C, Bone HG (2012) Inhibition of sclerostin with AMG 785 in postmenopausal women with low bone mineral density: phase 2 trial results. J Bone Mineral Res 27:s8Google Scholar
  91. 91.
    Wang FS, Ko JY, Lin CL, Wu HL, Ke HJ, Tai PJ (2007) Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone 40:485–492PubMedCrossRefGoogle Scholar
  92. 92.
    Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL (2008) Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology 149:1793–1801PubMedCrossRefGoogle Scholar
  93. 93.
    Heider U, Kaiser M, Mieth M, Lamottke B, Rademacher J, Jakob C, Braendle E, Stover D, Sezer O (2009) Serum concentrations of DKK-1 decrease in patients with multiple myeloma responding to anti-myeloma treatment. Eur J Haematol 82:31–38PubMedCrossRefGoogle Scholar
  94. 94.
    Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109:2106–2111PubMedCrossRefGoogle Scholar
  95. 95.
    Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114:371–379PubMedCrossRefGoogle Scholar
  96. 96.
    Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, Asuncion F, Li X, Ominsky M, Richards W, Schett G, Zwerina J (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152–2159PubMedCrossRefGoogle Scholar
  97. 97.
    Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PF, Simmons PJ, Dawid IB, Thomas DM (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomsgenesis in mice. J Clin Invest 119:837–851PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Medicine, Rheumatology Section, Policlinico Borgo RomaUniversity of VeronaVeronaItaly

Personalised recommendations