Calcified Tissue International

, Volume 93, Issue 3, pp 222–232

Effects of pH on the Production of Phosphate and Pyrophosphate by Matrix Vesicles’ Biomimetics

  • Ana Maria S. Simão
  • Maytê Bolean
  • Marc F. Hoylaerts
  • José Luis Millán
  • Pietro Ciancaglini
Original Research


During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (PPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP, and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph containing 1 mM ATP as substrate and amorphous calcium phosphate or calcium–phosphate–phosphatidylserine complexes as nucleators. Propagation of mineralization was significantly more efficient at pH 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP, and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization.


Biomineralization Alkaline pH Microenvironment Proteoliposome Pyrophosphate ATP 


  1. 1.
    Boskey AL (2006) Mineralization, structure and function of bone. In: Seibel MJ, Robins SP, Biezikian JP (eds) Dynamics of bone and cartilage metabolism. Academic, San Diego, pp 201–212CrossRefGoogle Scholar
  2. 2.
    Millán JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int. doi:10.1007/s00223-012-9672-8
  3. 3.
    Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520PubMedCrossRefGoogle Scholar
  4. 4.
    Robison R (1923) The possible significance of hexosephosphoric esters in ossification. Biochem J 17:286–293PubMedGoogle Scholar
  5. 5.
    Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231:1–8PubMedCrossRefGoogle Scholar
  6. 6.
    Rezende AA, Pizauro JM, Ciancaglini P, Leone FA (1994) Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate. Biochem J 301:517–522PubMedGoogle Scholar
  7. 7.
    Hessle L, Johnsson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449PubMedCrossRefGoogle Scholar
  8. 8.
    Harmey D, Hessle L, Narisawa S et al (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp 1, and Ank. Am J Pathol 164:1199–1209PubMedCrossRefGoogle Scholar
  9. 9.
    Terkeltaub RA (2001) Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 281:C1–C11PubMedGoogle Scholar
  10. 10.
    Huang R, Rosenbach M, Vaughn R et al (1994) Expression of the murine plasma cell nucleotide pyrophosphohydrolase PC-1 is shared by human liver, bone, and cartilage cells. Regulation of PC-1 expression in osteosarcoma cells by transforming growth factor-beta. J Clin Invest 94:560–567PubMedCrossRefGoogle Scholar
  11. 11.
    Johnson K, Moffa A, Chen Y et al (1999) Matrix vesicle plasma cell membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J Bone Miner Res 14:883–892PubMedCrossRefGoogle Scholar
  12. 12.
    Gijsbers R, Ceulemans H, Stalmans W, Bollen M (2001) Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J Biol Chem 276:1361–1368PubMedCrossRefGoogle Scholar
  13. 13.
    Ciancaglini P, Yadav MC, Simão AMS et al (2010) Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles. J Bone Miner Res 25:716–723PubMedGoogle Scholar
  14. 14.
    Simão AMS, Yadav MC, Narisawa S et al (2010) Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 285:7598–7609PubMedCrossRefGoogle Scholar
  15. 15.
    Ciancaglini P, Simão AMS, Camolezi FL et al (2006) Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation. Braz J Med Biol Res 39:603–610PubMedCrossRefGoogle Scholar
  16. 16.
    Ierardi DF, Pizauro JM, Ciancaglini P (2002) Erythrocyte ghost cell-alkaline phosphatase: construction and characterization of a vesicular system for use in biomineralization studies. Biochim Biophys Acta 1567:183–192PubMedCrossRefGoogle Scholar
  17. 17.
    Ciancaglini P, Simão AMS, Bolean M et al (2012) Proteoliposomes in nanobiotechnology. Biophys Rev 4:67–81CrossRefGoogle Scholar
  18. 18.
    Chakkalakal DA, Mashoof AA, Novak J et al (1994) Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. J Biomed Mater Res 28:1439–1443PubMedCrossRefGoogle Scholar
  19. 19.
    Wu LNY, Genge BR, Dunkelberger DG et al (1997) Physicochemical characterization of the nucleational core of matrix vesicles. J Biol Chem 272:4404–4411PubMedCrossRefGoogle Scholar
  20. 20.
    Arnett TR (2010) Acidosis, hypoxia and bone. Arch Biochem Biophys 503:103–109PubMedCrossRefGoogle Scholar
  21. 21.
    Bollen M, Gijsbers R, Ceulemans H et al (2000) Nucleotide pyrophosphatase/phophodiesterases on the move. Crit Rev Biochem Mol Biol 35:393–432PubMedCrossRefGoogle Scholar
  22. 22.
    Millán JL (2006) Mammalian alkaline phosphatases. From biology to applications in medicine and biotechnology. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar
  23. 23.
    Wu LN, Yoshimori T, Genge BR et al (1993) Characterization of the nucleational core complex responsible for mineral induction by growth plate cartilage matrix vesicles. J Biol Chem 268:25084–25094PubMedGoogle Scholar
  24. 24.
    Wu LN, Genge BR, Dunkelberger DG et al (1997) Physicochemical characterization of the nucleational core of matrix vesicles. J Biol Chem 272:4404–4411PubMedCrossRefGoogle Scholar
  25. 25.
    Simão AMS, Beloti MM, Cezarino RM et al (2007) Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture. Comp Biochem Physiol A 146:679–687CrossRefGoogle Scholar
  26. 26.
    Gijsbers R, Ceulemans H, Bollen M (2003) Functional characterization of the non-catalytic ectodomains of the nucleotide pyrophosphatase/phosphodiesterase NPP1. Biochem J 371:321–330PubMedCrossRefGoogle Scholar
  27. 27.
    Camolezi FL, Daghastanli KPR, Magalhães PP et al (2002) Construction of an alkaline phosphatase-liposome system: a tool for biomineralization study. Int J Biochem Cell Biol 1282:1–11Google Scholar
  28. 28.
    Hartree EF (1972) Determination of protein: a modification of the lowry method that gives a linear photometric response. Anal Biochem 48:422–427PubMedCrossRefGoogle Scholar
  29. 29.
    Pizauro JM, Ciancaglini P, Leone FA (1995) Characterization of the phosphatidylinositol-specific phospholipase C—released form of rat osseous plate alkaline phosphatase and its possible significance on endochondral ossification. Mol Cell Biochem 152:121–129PubMedCrossRefGoogle Scholar
  30. 30.
    Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317PubMedCrossRefGoogle Scholar
  31. 31.
    Leone FA, Baranauskas JA, Furriel RPM et al (2005) SigrafW: an easy-to-use program for fitting enzyme kinetic data. Biochem Mol Educ 33:399–403CrossRefGoogle Scholar
  32. 32.
    Genge BR, Wu LN, Wuthier RE (2007) Kinetic analysis of mineral formation during in vitro modeling of matrix vesicle mineralization: effect of annexin A5, phosphatidylserine, and type II collagen. Anal Biochem 367:159–166PubMedCrossRefGoogle Scholar
  33. 33.
    Wuthier RE, Rice GS, Wallace JE et al (1985) In vitro precipitation of calcium phosphate under intracellular conditions: formation of brushite from an amorphous precursor in the absence of ATP. Calcif Tissue Int 37:401–410PubMedCrossRefGoogle Scholar
  34. 34.
    Wu LNY, Wuthier MG, Genge BR et al (1997) In situ levels of intracellular Ca2+ and pH in avian growth plate cartilage. Clin Orthop Relat Res 335:310–324PubMedCrossRefGoogle Scholar
  35. 35.
    Wuthier RE (1977) Electrolytes of isolated epiphyseal chondrocytes, matrix vesicles, and extracellular fluid. Calcif Tissue Res 23:125–133PubMedCrossRefGoogle Scholar
  36. 36.
    Genge BR, Wu LN, Wuthier RE (2007) In vitro modeling of matrix vesicle nucleation: synergistic stimulation of mineral formation by annexin A5 and phosphatidylserine. J Biol Chem 282:26035–26045PubMedCrossRefGoogle Scholar
  37. 37.
    Boskey AL, Goldberg MR, Posner AS (1978) Calcium-phospholipid-phosphate complexes in mineralizing tissue. Proc Soc Exp Biol Med 157:590–593PubMedCrossRefGoogle Scholar
  38. 38.
    Wu LN, Genge BR, Sauer GR, Wuthier RE (1996) Characterization and reconstitution of the nucleational complex responsible for mineral formation by growth plate cartilage matrix vesicles. Connect Tissue Res 35:309–315PubMedCrossRefGoogle Scholar
  39. 39.
    Termine JD, Peckauskas RA, Posner AS (1970) Calcium phosphate formation in vitro: II. Effects of environment on amorphous crystalline transformation. Arch Biochem Biophys 140:318–325PubMedCrossRefGoogle Scholar
  40. 40.
    Eanes ED (1970) Thermochemical studies on amorphous calcium phosphate. Calcif Tissue Res 5:133–145PubMedCrossRefGoogle Scholar
  41. 41.
    Wuthier RE, Lipscomb GF (2011) Matrix vesicles: structure, composition, formation and function in calcification. Front Biosci 16:2812–2902CrossRefGoogle Scholar
  42. 42.
    Wuthier RE (1968) Lipids of mineralizing epiphyseal tissues in the bovine fetus. J Lipid Res 9:68–78PubMedGoogle Scholar
  43. 43.
    Boskey AL, Posner AS (1976) Extraction of a calcium-phospholipid-phosphate complex from bone. Calcif Tissue Res 19:273–283PubMedCrossRefGoogle Scholar
  44. 44.
    Wuthier RE, Gore ST (1977) Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: evidence for Ca–Pi–acidic phospholipid complexes. Calcif Tissue Res 24:163–171PubMedCrossRefGoogle Scholar
  45. 45.
    Valhmu WB, Wu LN, Wuthier RE (1990) Effects of Ca/Pi ratio, Ca2+ × Pi ion product, and pH of incubation fluid on accumulation of 45Ca2+ by matrix vesicles in vitro. Bone Miner 8:195–209PubMedCrossRefGoogle Scholar
  46. 46.
    Wu LN, Genge BR, Wuthier RE (2008) Analysis and molecular modeling of the formation, structure, and activity of the phosphatidylserine-calcium-phosphate complex associated with biomineralization. J Biol Chem 283:3827–3838PubMedCrossRefGoogle Scholar
  47. 47.
    Bennett RM, Lehr JR, McCarty DJ (1975) Factors affecting the solubility of calcium pyrophosphate dihydrate crystals. J Clin Invest 56:1571–1579PubMedCrossRefGoogle Scholar
  48. 48.
    Prasad R (1996) Manual of membrane lipids. Springer-Verlag, BerlinCrossRefGoogle Scholar
  49. 49.
    Simão AMS, Yadav MC, Ciancaglini P, Millán JL (2010) Proteoliposomes as matrix vesicles’ biomimetics to study the initiation of skeletal mineralization. Braz J Med Biol Res 43:234–241PubMedCrossRefGoogle Scholar
  50. 50.
    Roberts S, Narisawa S, Harmey D et al (2007) Functional involvement of PHOSPHO1 in matrix vesicle—mediated skeletal mineralization. J Bone Miner Res 22:617–627PubMedCrossRefGoogle Scholar
  51. 51.
    Xiao Z, Camalier CE, Nagashima K et al (2007) Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol 210:325–335PubMedCrossRefGoogle Scholar
  52. 52.
    Eanes ED (1989) Biophysical aspects of lipid interaction with mineral: liposome model studies. Anat Rec 224:220–225PubMedCrossRefGoogle Scholar
  53. 53.
    Carruthers A, Melchior DL (1986) How bilayer lipids affect membrane protein activity. Trends Biotechnol 11:331–335Google Scholar
  54. 54.
    Anderson HC, Hsu HH, Morris DC et al (1997) Matrix vesicles in osteomalacic hypophosphatasia bone contain apatite-like mineral crystals. Am J Pathol 151:1555–1561PubMedGoogle Scholar
  55. 55.
    Wu LN, Genge BR, Kang MW et al (2002) Changes in phospholipid extractability and composition accompany mineralization of chicken growth plate cartilage matrix vesicles. J Biol Chem 277:5126–5133PubMedCrossRefGoogle Scholar
  56. 56.
    Lehto MT, Sharom FJ (1998) Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5′-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer. Biochem J 332:101–109PubMedGoogle Scholar
  57. 57.
    Lehto MT, Sharom FJ (2002) Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: a FRET study. Biochemistry 41:8368–8376PubMedCrossRefGoogle Scholar
  58. 58.
    Lazic S (1995) Microcrystalline hydroxyapatite formation from alkaline solutions. J Crystal Growth 147:147–154CrossRefGoogle Scholar
  59. 59.
    Guicheux J, Palmer G, Shukunami C et al (2000) A novel in vitro culture system for analysis of functional role of phosphate transport in endochondral ossification. Bone 27:69–74PubMedCrossRefGoogle Scholar
  60. 60.
    Wu LN, Sauer GR, Genge BR et al (2003) Effects of analogues of inorganic phosphate and sodium ion on mineralization of matrix vesicles isolated from growth plate cartilage of normal rapidly growing chickens. J Inorg Biochem 94:221–235PubMedCrossRefGoogle Scholar
  61. 61.
    Balcerzak M, Malinowska A, Thouverey C et al (2008) Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics 8:192–205PubMedCrossRefGoogle Scholar
  62. 62.
    Hsu HH, Camacho NP, Anderson HC (1999) Further characterization of ATP-initiated calcification by matrix vesicles isolated from rachitic rat cartilage. Membrane perturbation by detergents and deposition of calcium pyrophosphate by rachitic matrix vesicles. Biochim Biophys Acta 1416:320–332PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ana Maria S. Simão
    • 1
    • 2
  • Maytê Bolean
    • 1
  • Marc F. Hoylaerts
    • 3
  • José Luis Millán
    • 2
  • Pietro Ciancaglini
    • 1
    • 2
  1. 1.Department of ChemistryFFCLRP-USPRibeirão PretoBrazil
  2. 2.Sanford Children’s Health Research CenterSanford-Burnham Medical Research InstituteLa JollaUSA
  3. 3.Center for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium

Personalised recommendations