Calcified Tissue International

, Volume 92, Issue 6, pp 495–500 | Cite as

Abdominal Aortic Calcification Detection Using Dual-Energy X-Ray Absorptiometry: Validation Study in Healthy Women Compared to Computed Tomography

  • Marina Cecelja
  • Michelle L. Frost
  • Tim D. Spector
  • Phil Chowienczyk
Original Research


Abdominal aortic calcification (AAC) is an independent determinant of cardiovascular events. Computed tomography (CT) is currently the gold standard measure of AAC but is limited by high radiation exposure. Lateral dual-energy X-ray absorptiometry (DXA) has the potential to detect AAC at a fraction of the radiation dose. Our objective was to determine the accuracy of lateral-DXA in detecting AAC compared to CT in healthy women. Women from the TwinsUK registry aged 52–80 years (n = 105) underwent noncontrast CT and lateral-DXA imaging of the abdominal aorta at lumbar vertebrae L1–L4. Presence of calcium on CT was scored using the volume method. Lateral-DXA images were scored using the previously validated semiquantitative 24-point score and simplified 8-point score. Calcification was present in 81 % of women as determined by CT and 49 % with lateral-DXA. The mean volume score and the 24- and 8-point scores of AAC were 0.20 ± 0.41 cm2, 2.39 ± 3.91 arbitrary units, and 1.47 ± 2.13 arbitrary units, respectively. There was moderate agreement between CT and 24-point lateral-DXA (Spearman’s rank correlation coefficient r = 0.58, P < 0.0001). The sensitivity of lateral-DXA for detecting AAC was 56 % and specificity was 80 %. Sensitivity and specificity of lateral-DXA improved to 64 and 84 % when analysis was limited to calcium volumes ≥0.008 cm3 as detected by CT. Lateral-DXA imaging may provide a useful alternative to CT in detecting AAC with minimal radiation exposure, which may be used with concurrent bone mineral density assessment.


Aorta Calcification CT DXA 



This work was supported by a British Heart Foundation project Grant (PG/06/032 and SP/12/4/29573). The TwinsUK study was funded by the Wellcome Trust; the European Community’s Sixth and Seventh Framework Programmes (FP-6/2005–2008), Life Sciences and Health (005268), the EuroClot Consortium (FP7/2007–2013), the ENGAGE project (HEALTH-F4-2007-201413), and the FP-5 GenomEUtwin Project (QLG2-CT-2002-01254). The authors acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s and St. Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. T.D.S. is an NIHR senior Investigator.


  1. 1.
    Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847PubMedCrossRefGoogle Scholar
  2. 2.
    Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff AM, Topol EJ (2003) Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 290:898–904PubMedCrossRefGoogle Scholar
  3. 3.
    Lauer MS (2007) Primary prevention of atherosclerotic cardiovascular disease: the high public burden of low individual risk. JAMA 297:1376–1378PubMedCrossRefGoogle Scholar
  4. 4.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De SG, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Roger VL, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics—2010 update: a report from the American heart association. Circulation 121:e46–e215PubMedCrossRefGoogle Scholar
  5. 5.
    Hollander M, Hak AE, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A, Witteman JC, Breteler MM (2003) Comparison between measures of atherosclerosis and risk of stroke: the Rotterdam study. Stroke 34:2367–2372PubMedCrossRefGoogle Scholar
  6. 6.
    van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109:1089–1094PubMedCrossRefGoogle Scholar
  7. 7.
    Walsh CR, Cupples LA, Levy D, Kiel DP, Hannan M, Wilson PW, O’Donnell CJ (2002) Abdominal aortic calcific deposits are associated with increased risk for congestive heart failure: the Framingham heart study. Am Heart J 144:733–739PubMedGoogle Scholar
  8. 8.
    Wilson PW, Kauppila LI, O’Donnell CJ, Kiel DP, Hannan M, Polak JM, Cupples LA (2001) Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. Circulation 103:1529–1534PubMedCrossRefGoogle Scholar
  9. 9.
    Elias-Smale SE, Wieberdink RG, Odink AE, Hofman A, Hunink MG, Koudstaal PJ, Krestin GP, Breteler MM, van der Lugt A, Witteman JC (2011) Burden of atherosclerosis improves the prediction of coronary heart disease but not cerebrovascular events: the Rotterdam study. Eur Heart J 32:2050–2058PubMedCrossRefGoogle Scholar
  10. 10.
    Peters SA, den Ruijter HM, Bots ML, Moons KG (2012) Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart 98:177–184PubMedCrossRefGoogle Scholar
  11. 11.
    Oyama N, Gona P, Salton CJ, Chuang ML, Jhaveri RR, Blease SJ, Manning AR, Lahiri M, Botnar RM, Levy D, Larson MG, O’Donnell CJ, Manning WJ (2008) Differential impact of age, sex, and hypertension on aortic atherosclerosis: the Framingham heart study. Arterioscler Thromb Vasc Biol 28:155–159PubMedCrossRefGoogle Scholar
  12. 12.
    Wong ND, Lopez VA, Allison M, Detrano RC, Blumenthal RS, Folsom AR, Ouyang P, Criqui MH (2011) Abdominal aortic calcium and multi-site atherosclerosis: the Multiethnic Study of Atherosclerosis. Atherosclerosis 214:436–441PubMedCrossRefGoogle Scholar
  13. 13.
    Owen DR, Lindsay AC, Choudhury RP, Fayad ZA (2011) Imaging of atherosclerosis. Annu Rev Med 62:25–40PubMedCrossRefGoogle Scholar
  14. 14.
    El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM 101:605–617PubMedCrossRefGoogle Scholar
  15. 15.
    Schousboe JT, Wilson KE, Hangartner TN (2007) Detection of aortic calcification during vertebral fracture assessment (VFA) compared to digital radiography. PLoS ONE 2:e715PubMedCrossRefGoogle Scholar
  16. 16.
    Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG (2009) Determination and validation of aortic calcification measurement from lateral bone densitometry in dialysis patients. Clin J Am Soc Nephrol 4:119–127PubMedCrossRefGoogle Scholar
  17. 17.
    Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG (2010) Using vertebral bone densitometry to determine aortic calcification in patients with chronic kidney disease. Nephrology (Carlton) 15:575–583CrossRefGoogle Scholar
  18. 18.
    Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM (2001) Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38:938–942PubMedCrossRefGoogle Scholar
  19. 19.
    Foley RN (2010) Clinical epidemiology of cardiovascular disease in chronic kidney disease. J Ren Care 36(Suppl 1):4–8PubMedCrossRefGoogle Scholar
  20. 20.
    London GM (2003) Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol 14:S305–S309PubMedCrossRefGoogle Scholar
  21. 21.
    Andrew T, Hart DJ, Snieder H, de Lange M, Spector TD, MacGregor AJ (2001) Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Res 4:464–477PubMedGoogle Scholar
  22. 22.
    Abbas A, Smith A, Cecelja M, Waltham M (2012) Assessment of the accuracy of aortascan for detection of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg 43:167–170PubMedCrossRefGoogle Scholar
  23. 23.
    Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132:245–250PubMedCrossRefGoogle Scholar
  24. 24.
    Schousboe JT, Wilson KE, Kiel DP (2006) Detection of abdominal aortic calcification with lateral spine imaging using DXA. J Clin Densitom 9:302–308PubMedCrossRefGoogle Scholar
  25. 25.
    Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group (1993) Natural history of aortic and coronary atherosclerotic lesions in youth. Findings from the PDAY study. Arterioscler Thromb 13:1291–1298CrossRefGoogle Scholar
  26. 26.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation 92:1355–1374PubMedCrossRefGoogle Scholar
  27. 27.
    Demer LL, Tintut Y (2008) Vascular calcification: pathobiology of a multifaceted disease. Circulation 117:2938–2948PubMedCrossRefGoogle Scholar
  28. 28.
    Niederhoffer N, Lartaud-Idjouadiene I, Giummelly P, Duvivier C, Peslin R, Atkinson J (1997) Calcification of medial elastic fibers and aortic elasticity. Hypertension 29:999–1006PubMedCrossRefGoogle Scholar
  29. 29.
    McEniery CM, Yasmin WallaceS, Maki-Petaja K, McDonnell B, Sharman JE, Retallick C, Franklin SS, Brown MJ, Lloyd RC, Cockcroft JR, Wilkinson IB (2005) Increased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults. Hypertension 46:221–226PubMedCrossRefGoogle Scholar
  30. 30.
    Meaume S, Benetos A, Henry OF, Rudnichi A, Safar ME (2001) Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol 21:2046–2050PubMedCrossRefGoogle Scholar
  31. 31.
    Sutton-Tyrrell K, Najjar SS, Boudreau RM, Venkitachalam L, Kupelian V, Simonsick EM, Havlik R, Lakatta EG, Spurgeon H, Kritchevsky S, Pahor M, Bauer D, Newman A (2005) Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 111:3384–3390PubMedCrossRefGoogle Scholar
  32. 32.
    Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, Jeppesen J (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113:664–670PubMedCrossRefGoogle Scholar
  33. 33.
    Blacher J, Asmar R, Djane S, London GM, Safar ME (1999) Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33:1111–1117PubMedCrossRefGoogle Scholar
  34. 34.
    Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, Laurent S (2002) Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 39:10–15PubMedCrossRefGoogle Scholar
  35. 35.
    Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241PubMedCrossRefGoogle Scholar
  36. 36.
    Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG (2002) Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 106:2085–2090PubMedCrossRefGoogle Scholar
  37. 37.
    Cecelja M, Jiang B, Bevan L, Frost ML, Spector TD, Chowienczyk PJ (2011) Arterial stiffening relates to arterial calcification but not to noncalcified atheroma in women. A twin study. J Am Coll Cardiol 57:1480–1486PubMedCrossRefGoogle Scholar
  38. 38.
    McEniery CM, McDonnell BJ, So A, Aitken S, Bolton CE, Munnery M, Hickson SS, Yasmin, Maki-Petaja KM, Cockcroft JR, Dixon AK, Wilkinson IB (2009) Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension 53:524–531PubMedCrossRefGoogle Scholar
  39. 39.
    Zureik M, Bureau JM, Temmar M, Adamopoulos C, Courbon D, Bean K, Touboul PJ, Benetos A, Ducimetiere P (2003) Echogenic carotid plaques are associated with aortic arterial stiffness in subjects with subclinical carotid atherosclerosis. Hypertension 41:519–527PubMedCrossRefGoogle Scholar
  40. 40.
    Reaven PD, Sacks J (2005) Coronary artery and abdominal aortic calcification are associated with cardiovascular disease in type 2 diabetes. Diabetologia 48:379–385PubMedCrossRefGoogle Scholar
  41. 41.
    Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714PubMedCrossRefGoogle Scholar
  42. 42.
    Bolland MJ, Wang TK, van Pelt NC, Horne AM, Mason BH, Ames RW, Grey AB, Ruygrok PN, Gamble GD, Reid IR (2010) Abdominal aortic calcification on vertebral morphometry images predicts incident myocardial infarction. J Bone Miner Res 25:505–512PubMedCrossRefGoogle Scholar
  43. 43.
    Golestani R, Tio R, Zeebregts CJ, Zeilstra A, Dierckx RA, Boersma HH, Hillege HL, Slart RH (2010) Abdominal aortic calcification detected by dual X-ray absorptiometry: a strong predictor for cardiovascular events. Ann Med 42:539–545PubMedCrossRefGoogle Scholar
  44. 44.
    Schousboe JT, Taylor BC, Kiel DP, Ensrud KE, Wilson KE, McCloskey EV (2008) Abdominal aortic calcification detected on lateral spine images from a bone densitometer predicts incident myocardial infarction or stroke in older women. J Bone Miner Res 23:409–416PubMedCrossRefGoogle Scholar
  45. 45.
    Christensen K, Wienke A, Skytthe A, Holm NV, Vaupel JW, Yashin AI (2001) Cardiovascular mortality in twins and the fetal origins hypothesis. Twin Res 4:344–349PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marina Cecelja
    • 1
  • Michelle L. Frost
    • 2
  • Tim D. Spector
    • 3
  • Phil Chowienczyk
    • 1
  1. 1.King’s College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical PharmacologySt Thomas’ HospitalLondonUK
  2. 2.Osteoporosis Unit, Division of Imaging SciencesKing’s College LondonLondonUK
  3. 3.Department of Twin Research and Genetic EpidemiologySt Thomas’ Hospital, King’s College LondonLondonUK

Personalised recommendations