Calcified Tissue International

, Volume 92, Issue 5, pp 418–428

Fourier Transform Infrared Spectroscopic Imaging Parameters Describing Acid Phosphate Substitution in Biologic Hydroxyapatite

  • Lyudmila Spevak
  • Carol R. Flach
  • Tracey Hunter
  • Richard Mendelsohn
  • Adele Boskey
Original Research


Acid phosphate substitution into mineralized tissues is an important determinant of their mechanical properties and their response to treatment. This study identifies and validates Fourier transform infrared spectroscopic imaging (FTIRI) spectral parameters that provide information on the acid phosphate (HPO4) substitution into hydroxyapatite in developing mineralized tissues. Curve fitting and Fourier self-deconvolution were used to identify subband positions in model compounds (with and without HPO4). The intensity of subbands at 1127 and 1110 cm−1 correlated with the acid phosphate content in these models. Peak height ratios of these subbands to the ν3 vibration at 1096 cm−1 found in stoichiometric apatite were evaluated in the model compounds and mixtures thereof. FTIRI spectra of bones and teeth at different developmental ages were analyzed using these spectral parameters. Factor analysis (a chemometric technique) was also conducted on the tissue samples and resulted in factor loadings with spectral features corresponding to the HPO4 vibrations described above. Images of both factor correlation coefficients and the peak height ratios 1127/1096 and 1112/1096 cm−1 demonstrated higher acid phosphate content in younger vs. more mature regions in the same specimen. Maps of the distribution of acid phosphate content will be useful for characterizing the extent of new bone formation, the areas of potential decreased strength, and the effects of therapies such as those used in metabolic bone diseases (osteoporosis, chronic kidney disease) on mineral composition. Because of the wider range of values obtained with the 1127/1096 cm−1 parameter compared to the 1110/1096 cm−1 parameter and the smaller scatter in the slope, it is suggested that this ratio should be the parameter of choice.


FTIR imaging Hydroxyapatite Bone mineral Dentin mineral Acid phosphate 


  1. 1.
    Paschalis EP, Mendelsohn R, Boskey AL (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469:2170–2178PubMedCrossRefGoogle Scholar
  2. 2.
    Krafft C, Steiner G, Beleites C, Salzer R (2009) Disease recognition by infrared and Raman spectroscopy. J Biophotonics 2:13–28PubMedCrossRefGoogle Scholar
  3. 3.
    Boskey A, Pleshko Camacho N (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478PubMedCrossRefGoogle Scholar
  4. 4.
    Boskey AL, Young MF, Kilts T, Verdelis K (2005) Variation in mineral properties in normal and mutant bones and teeth. Cells Tissues Organs 181:144–153PubMedCrossRefGoogle Scholar
  5. 5.
    Miller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S (2007) Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res 22:1037–1045PubMedCrossRefGoogle Scholar
  6. 6.
    Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, van der Meulen MC, Boskey AL (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281PubMedCrossRefGoogle Scholar
  7. 7.
    Gourion-Arsiquaud S, Faibish D, Myers E, Spevak L, Compston J, Hodsman A, Shane E, Recker RR, Boskey ER, Boskey AL (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24:1565–1571PubMedCrossRefGoogle Scholar
  8. 8.
    Paschalis EP, Boskey AL, Kassem M, Eriksen EF (2003) Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res 18:955–959PubMedCrossRefGoogle Scholar
  9. 9.
    Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678PubMedCrossRefGoogle Scholar
  10. 10.
    Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin CJ, Kindmark A, Roschger P, Klaushofer K, McAlister WH, Mumm S, Leikin S, Kessler E, Boskey AL, Ljunggren O, Marini JC (2011) COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32:598–609PubMedCrossRefGoogle Scholar
  11. 11.
    Verdelis K, Ling Y, Sreenath T, Haruyama N, MacDougall M, van der Meulen MC, Lukashova L, Spevak L, Kulkarni AB, Boskey AL (2008) DSPP effects on in vivo bone mineralization. Bone 43:983–990PubMedCrossRefGoogle Scholar
  12. 12.
    Wang CJ, Chen IP, Koczon-Jaremko B, Boskey AL, Ueki Y, Kuhn L, Reichenberger EJ (2010) Pro416Arg cherubism mutation in Sh3bp2 knock-in mice affects osteoblasts and alters bone mineral and matrix properties. Bone 46:1306–1315PubMedCrossRefGoogle Scholar
  13. 13.
    Kazarian SG, Chan KLA (2003) “Chemical photography” of drug release. Macromolecules 36:9866–9872CrossRefGoogle Scholar
  14. 14.
    Gourion-Arsiquaud S, West PA, Boskey AL (2008) Fourier transform-infrared microspectroscopy and microscopic imaging. Methods Mol Biol 455:293–303PubMedCrossRefGoogle Scholar
  15. 15.
    Grahn HF, Gelati P (2007) Techniques and applications of hyperspectral image analysis. Wiley, ChichesterCrossRefGoogle Scholar
  16. 16.
    Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36:6–12PubMedCrossRefGoogle Scholar
  17. 17.
    Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) Infrared microscopic imaging of bone: spatial distribution of CO3 2−. J Bone Miner Res 16:893–900PubMedCrossRefGoogle Scholar
  18. 18.
    Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486PubMedCrossRefGoogle Scholar
  19. 19.
    Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu4 PO4 3− vibration. Biochim Biophys Acta 1527:11–19PubMedCrossRefGoogle Scholar
  20. 20.
    Ruppel ME, Burr DB, Miller LM (2006) Chemical makeup of microdamaged bone differs from undamaged bone. Bone 39:318–324PubMedCrossRefGoogle Scholar
  21. 21.
    Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196PubMedCrossRefGoogle Scholar
  22. 22.
    Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038PubMedCrossRefGoogle Scholar
  23. 23.
    Courtland HW, Nasser P, Goldstone AB, Spevak L, Boskey AL, Jepsen KJ (2008) Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition. Calcif Tissue Int 83:342–353PubMedCrossRefGoogle Scholar
  24. 24.
    Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487PubMedGoogle Scholar
  25. 25.
    Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain. Calcif Tissue Int 49:383–398PubMedCrossRefGoogle Scholar
  26. 26.
    Fowler BO, Markovic M, Brown WE (1993) Octacalcium phosphate. 3. Infrared and Raman vibrational spectra. Chem Mater 5:1417–1423CrossRefGoogle Scholar
  27. 27.
    Blumenthal NC, Betts F, Posner AS (1981) Formation and structure of Ca-deficient hydroxyapatite. Calcif Tissue Int 33:111–117PubMedCrossRefGoogle Scholar
  28. 28.
    International ASTM (2009) Standard specification for composition of hydroxylapatite for surgical implants. ASTM F1185–03, Book of Standards 13.01. ASTM International, West ConshohockenGoogle Scholar
  29. 29.
    Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. Wiley, Hoboken, pp 237–246CrossRefGoogle Scholar
  30. 30.
    Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: investigations in the v 4 PO4 domain. Calcif Tissue Int 46:384–394PubMedCrossRefGoogle Scholar
  31. 31.
    Bastlevsky A (2009) Statistical factor analysis and related methods: theory and applications. Wiley, HobokenGoogle Scholar
  32. 32.
    Verdelis K, Lukashova L, Yamauchi M, Atsawasuwan P, Wright JT, Peterson MG, Jha D, Boskey AL (2007) Changes in matrix phosphorylation during bovine dentin development. Eur J Oral Sci 115:296–302PubMedCrossRefGoogle Scholar
  33. 33.
    Sloofman LG, Verdelis K, Spevak L, Zayzafoon M, Yamauchi M, Opdenaker LM, Farach-Carson MC, Boskey AL, Kirn-Safran CB (2010) Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth. Bone 47:93–101PubMedCrossRefGoogle Scholar
  34. 34.
    Boskey AL, Gelb BD, Pourmand E, Kudrashov V, Doty SB, Spevak L, Schaffler MB (2009) Ablation of cathepsin K activity in the young mouse causes hypermineralization of long bone and growth plates. Calcif Tissue Int 84:229–239PubMedCrossRefGoogle Scholar
  35. 35.
    Boskey A, Frank A, Fujimoto Y, Spevak L, Verdelis K, Ellis B, Troiano N, Philbrick W, Carpenter T (2009) The PHEX transgene corrects mineralization defects in 9-month-old hypophosphatemic mice. Calcif Tissue Int 84:126–137PubMedCrossRefGoogle Scholar
  36. 36.
    Mathew M, Takagi S (2001) Structures of biological minerals in dental research. J Res Natl Inst Stand Technol 106:1035–1044CrossRefGoogle Scholar
  37. 37.
    Reiche I, Lebon M, Chadefaux C, Müller K, Le Hô AS, Gensch M, Schade U (2010) Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy. Anal Bioanal Chem 397:2491–2499PubMedCrossRefGoogle Scholar
  38. 38.
    Lebon M, Reiche I, Fröhlich F, Bahain JJ, Falguères C (2008) Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain. Anal Bioanal Chem 392:1479–1488PubMedCrossRefGoogle Scholar
  39. 39.
    Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 2:433–445CrossRefGoogle Scholar
  40. 40.
    Pleshko NL, Boskey AL, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60:786–793PubMedCrossRefGoogle Scholar
  41. 41.
    Berry EE, Baddiel CB (1967) The infra-red spectrum of dicalcium phosphate dihydrate (brushite). Spectrochim Acta 23A:2089–2097Google Scholar
  42. 42.
    Roberts JE, Bonar LC, Griffin RG, Glimcher MJ (1992) Characterization of very young mineral phases of bone by solid state 31phosphorus magic angle sample spinning nuclear magnetic resonance and X-ray diffraction. Calcif Tissue Int 50:42–48PubMedCrossRefGoogle Scholar
  43. 43.
    Cheng W, Yue Y, Fan W, Hu Y, Wang X, Pan X, Zhou X, Qin L, Zhang P (2012) Effects of tetracyclines on bones: an ambiguous question needs to be clarified. Pharmazie 67:457–459PubMedGoogle Scholar
  44. 44.
    Huang RY, Miller LM, Carlson CS, Chance MR (2002) Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone 30:492–497PubMedCrossRefGoogle Scholar
  45. 45.
    Isaksson H, Turunen MJ, Rieppo L, Saarakkala S, Tamminen IS, Rieppo J, Kröger H, Jurvelin JS (2010) Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J Bone Miner Res 25:1360–1366PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lyudmila Spevak
    • 1
  • Carol R. Flach
    • 2
  • Tracey Hunter
    • 1
  • Richard Mendelsohn
    • 2
  • Adele Boskey
    • 1
  1. 1.Hospital for Special SurgeryNew YorkUSA
  2. 2.Rutgers UniversityNewarkUSA

Personalised recommendations