Skip to main content

Advertisement

Log in

1,25-Dihydroxyvitamin D3 Regulation of Fibroblast Growth Factor-23 Expression in Bone Cells: Evidence for Primary and Secondary Mechanisms Modulated by Leptin and Interleukin-6

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Fibroblast growth factor-23 (FGF23) is a circulating hormone that acts to correct hyperphosphatemic states by inhibiting renal phosphate reabsorption and to prevent hypervitaminosis D by feedback repressing 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) biosynthesis. FGF23 gene expression in the osteoblast/osteocyte is induced by the nuclear vitamin D receptor (VDR) bound to 1,25(OH)2D3, but cycloheximide sensitivity of this induction suggests that it may occur largely via secondary mechanisms requiring cooperating transcription factors. We therefore sought to identify 1,25(OH)2D3-regulated transcription factors that might impact FGF23 expression. Although neither leptin nor interleukin-6 (IL-6) alone affects FGF23 expression, leptin treatment was found to potentiate 1,25(OH)2D3 upregulation of FGF23 in UMR-106 cells, whereas IL-6 treatment blunted this upregulation. Genomic analyses revealed conserved binding sites for STATs (signal transduction mediators of leptin and IL-6 action) along with transcription factor ETS1 in human and other mammalian FGF23 genes. Further, STAT3, STAT1, ETS1, and VDR mRNAs were induced in a dose-dependent manner by 1,25(OH)2D3 in UMR-106 cells. Bioinformatic analysis identified nine potential VDREs in a genomic interval containing human FGF23. Six of the putative VDREs were capable of mediating direct transcriptional activation of a heterologous reporter gene when bound by a 1,25(OH)2D3-liganded VDR complex. A model is proposed wherein 1,25(OH)2D3 upregulates FGF23 production directly via multiple VDREs and indirectly via induction of STAT3, ETS1, and VDR transcription factors that are then activated via cell surface and intracellular signaling to cooperate in the induction of FGF23 through DNA looping and generation of euchromatin architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haussler MR, Haussler CA, Whitfield GK, Hsieh JC, Thompson PD, Barthel TK et al (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “Fountain of Youth” to mediate healthful aging. J Steroid Biochem Mol Biol 121:88–97

    Article  PubMed  CAS  Google Scholar 

  2. Haussler MR, Whitfield GK, Haussler CA, Hsieh J-C, Jurutka PW (2011) Nuclear vitamin D receptor: natural ligands, molecular structure–function, and transcriptional control of vital genes. In: Feldman D, Pike JW, Adams JS (eds) vitamin D, vol 1, 3rd edn. Academic Press, Amsterdam, pp 137–170

    Chapter  Google Scholar 

  3. Murayama A, Takeyama K, Kitanaka S, Kodera Y, Hosoya T, Kato S (1998) The promoter of the human 25-hydroxyvitamin D3 1 alpha-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha,25(OH)2D3. Biochem Biophys Res Commun 249:11–16

    Article  PubMed  CAS  Google Scholar 

  4. Haussler MR, Whitfield GK, Haussler CA, Hsieh J-C, Thompson PD, Selznick SH et al (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 13:325–349

    Article  PubMed  CAS  Google Scholar 

  5. Kuro-o M (2010) Overview of the FGF23–Klotho axis. Pediatr Nephrol 25:583–590

    Article  PubMed  Google Scholar 

  6. Razzaque MS (2009) The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5:611–619

    Article  PubMed  CAS  Google Scholar 

  7. Kolek OI, Hines ER, Jones MD, Lesueur LK, Lipko MA, Kiela PR et al (2005) 1α25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal–gastrointestinal–skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042

    Article  PubMed  CAS  Google Scholar 

  8. Saji F, Shigematsu T, Sakaguchi T, Ohya M, Orita H, Maeda Y et al (2010) Fibroblast growth factor 23 production in bone is directly regulated by 1α25-dihydroxyvitamin D, but not PTH. Am J Physiol Renal Physiol 299:F1212–F1217

    Article  PubMed  CAS  Google Scholar 

  9. Farrow EG, Davis SI, Summers LJ, White KE (2009) Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol 20:955–960

    Article  PubMed  CAS  Google Scholar 

  10. Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T et al (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23–FGFR–Klotho complex formation. Proc Natl Acad Sci USA 107:407–412

    Article  PubMed  CAS  Google Scholar 

  11. Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118:3820–3828

    Article  PubMed  CAS  Google Scholar 

  12. Yu X, Sabbagh Y, Davis SI, Demay MB, White KE (2005) Genetic dissection of phosphate-and vitamin D–mediated regulation of circulating Fgf23 concentrations. Bone 36:971–977

    Article  PubMed  CAS  Google Scholar 

  13. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  PubMed  CAS  Google Scholar 

  14. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T et al (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568

    PubMed  CAS  Google Scholar 

  15. Gutierrez OM (2011) Increased serum phosphate and adverse clinical outcomes: unraveling mechanisms of disease. Curr Opin Nephrol Hypertens 20:224–228

    Article  PubMed  CAS  Google Scholar 

  16. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A et al (2007) Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kidney disease (MMKD) study. J Am Soc Nephrol 18:2600–2608

    Article  PubMed  CAS  Google Scholar 

  17. Alizadeh Naderi AS, Reilly RF (2010) Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol 6:657–665

    Article  PubMed  CAS  Google Scholar 

  18. Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR (2009) Molecular pathology of the fibroblast growth factor family. Hum Mutat 30:1245–1255

    Article  PubMed  CAS  Google Scholar 

  19. Chong WH, Molinolo AA, Chen CC, Collins MT (2011) Tumor-induced osteomalacia. Endocr Relat Cancer 18:R53–R77

    Article  PubMed  CAS  Google Scholar 

  20. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19:24–32

    Article  PubMed  CAS  Google Scholar 

  21. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    PubMed  CAS  Google Scholar 

  22. Haussler MR, Haussler CA, Bartik L, Whitfield GK, Hsieh JC, Slater S et al (2008) Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev 66:S98–S112

    Article  PubMed  Google Scholar 

  23. Hsieh J-C, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS et al (1991) Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci USA 88:9315–9319

    Article  PubMed  CAS  Google Scholar 

  24. Hsieh J-C, Jurutka PW, Nakajima S, Galligan MA, Haussler CA, Shimizu Y et al (1993) Phosphorylation of the human vitamin D receptor by protein kinase C: biochemical and functional evaluation of the serine 51 recognition site. J Biol Chem 268:15118–15126

    PubMed  CAS  Google Scholar 

  25. MacDonald PN, Dowd DR, Nakajima S, Galligan MA, Reeder MC, Haussler CA et al (1993) Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3–activated expression of the rat osteocalcin gene. Mol Cell Biol 13:5907–5917

    PubMed  CAS  Google Scholar 

  26. Terpening CM, Haussler CA, Jurutka PW, Galligan MA, Komm BS, Haussler MR (1991) The vitamin D–responsive element in the rat bone gla protein is an imperfect direct repeat that cooperates with other cis-elements in 1,25-dihydroxyvitamin D3–mediated transcriptional activation. Mol Endocrinol 5:373–385

    Article  PubMed  CAS  Google Scholar 

  27. Thompson PD, Jurutka PW, Whitfield GK, Myskowski SM, Eichhorst KR, Dominguez CE et al (2002) Liganded VDR induces CYP3A4 in small intestinal and colon cancer cells via DR3 and ER6 vitamin D responsive elements. Biochem Biophys Res Commun 299:730–738

    Article  PubMed  CAS  Google Scholar 

  28. Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, Kuhn RM et al (2012) The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res 40:D918–D923

    Article  PubMed  CAS  Google Scholar 

  29. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M et al (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17:1305–1315

    Article  PubMed  CAS  Google Scholar 

  30. Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N (2010) Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 25:1711–1723

    Article  PubMed  CAS  Google Scholar 

  31. Mendoza JM, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH et al (2012) Fibroblast growth factor 23 and inflammation in CKD. Clin J Am Soc Nephrol 7:1155–1162

    Article  CAS  Google Scholar 

  32. Liu WH, Zhou QL, Ao X, Yu HL, Peng WS, He N (2012) Fibroblast growth factor-23 and interleukin-6 are risk factors for left ventricular hypertrophy in peritoneal dialysis patients. J Cardiovasc Med (Hagerstown) 13:565–569

    Article  CAS  Google Scholar 

  33. Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC et al (2012) The role of vitamin D in the FGF23, klotho, and phosphate bone–kidney endocrine axis. Rev Endocr Metab Disord 13:57–69

    Article  PubMed  CAS  Google Scholar 

  34. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  PubMed  CAS  Google Scholar 

  35. Euskirchen GM, Rozowsky JS, Wei CL, Lee WH, Zhang ZD, Hartman S et al (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array-and sequencing-based technologies. Genome Res 17:898–909

    Article  PubMed  CAS  Google Scholar 

  36. Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29:2147–2160

    Article  PubMed  CAS  Google Scholar 

  37. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM et al (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14:708–715

    Article  PubMed  CAS  Google Scholar 

  38. Meyer MB, Lee CH, Benkuskey NA, Sen B, Rubin J, Pike JW (2012) VDR inhibits mouse mesenchymal stem cell osteogenic differentiation and mineralization. In: Abstracts from the 15th Workshop on Vitamin D, Houston, TX, June 20–22, p 27

  39. Meyer MB, Goetsch PD, Pike JW (2010) Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. J Steroid Biochem Mol Biol 121:136–141

    Article  PubMed  CAS  Google Scholar 

  40. Pike JW, Meyer MB (2011) Regulation of mouse Cyp24a1 expression via promoter-proximal and downstream-distal enhancers highlights new concepts of 1,25-dihydroxyvitamin D3 action. Arch Biochem Biophys 523:2–8

    Article  PubMed  Google Scholar 

  41. Ito M, Sakai Y, Furumoto M, Segawa H, Haito S, Yamanaka S et al (2005) Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab 288:E1101–E1109

    Article  PubMed  CAS  Google Scholar 

  42. Kim S, Yamazaki M, Zella LA, Shevde NK, Pike JW (2006) Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 26:6469–6486

    Article  PubMed  CAS  Google Scholar 

  43. Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE et al (2011) Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49:636–643

    Article  PubMed  CAS  Google Scholar 

  44. Fu Q, Manolagas SC, O’Brien CA (2006) Parathyroid hormone controls receptor activator of NF-kappaB ligand gene expression via a distant transcriptional enhancer. Mol Cell Biol 26:6453–6468

    Article  PubMed  CAS  Google Scholar 

  45. Vidal M, Ramana CV, Dusso AS (2002) Stat1–vitamin D receptor interactions antagonize 1,25-dihydroxyvitamin D transcriptional activity and enhance stat1-mediated transcription. Mol Cell Biol 22:2287–2777

    Article  Google Scholar 

  46. Drane P, Compe E, Catez P, Chymkowitch P, Egly JM (2004) Selective regulation of vitamin D receptor–responsive genes by TFIIH. Mol Cell 16:187–197

    Article  PubMed  CAS  Google Scholar 

  47. Miedlich SU, Zhu ED, Sabbagh Y, Demay MB (2010) The receptor-dependent actions of 1,25-dihydroxyvitamin D are required for normal growth plate maturation in NPt2a knockout mice. Endocrinology 151:4607–4612

    Article  PubMed  CAS  Google Scholar 

  48. Orfanidou T, Malizos KN, Varitimidis S, Tsezou A (2012) 1,25-Dihydroxyvitamin D3 and extracellular inorganic phosphate activate mitogen-activated protein kinase pathway through fibroblast growth factor 23 contributing to hypertrophy and mineralization in osteoarthritic chondrocytes. Exp Biol Med (Maywood) 237:241–253

    Article  CAS  Google Scholar 

  49. Martin A, Liu S, David V, Li H, Karydis A, Feng JQ et al (2011) Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 25:2551–2562

    Article  PubMed  CAS  Google Scholar 

  50. Yamazaki M, Ozono K, Okada T, Tachikawa K, Kondou H, Ohata Y et al (2010) Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem 111:1210–1221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to M. R. H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kerr Whitfield.

Additional information

The authors have stated that they have no conflict of interest.

R. K. Saini and I. Kaneko contributed equally to this work and are therefore to be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, R.K., Kaneko, I., Jurutka, P.W. et al. 1,25-Dihydroxyvitamin D3 Regulation of Fibroblast Growth Factor-23 Expression in Bone Cells: Evidence for Primary and Secondary Mechanisms Modulated by Leptin and Interleukin-6. Calcif Tissue Int 92, 339–353 (2013). https://doi.org/10.1007/s00223-012-9683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9683-5

Keywords

Navigation