Calcified Tissue International

, Volume 92, Issue 3, pp 251–260

Effects of Zoledronate on Irradiated Bone In Vivo: Analysis of the Collagen Types I, V and Their Cross-links Lysylpyridinoline, Hydroxylysylpyridinoline and Hydroxyproline

  • Yahya Açil
  • Matthias Gierloff
  • Carolin Behrens
  • Björn Möller
  • Volker Gassling
  • Peter Niehoff
  • Jörg Wiltfang
  • Maciej Simon
Original Research

Abstract

Radiotherapy can lead to a reduction of bone density with an increased risk of pathological fractures. Bisphosphonates may represent a preventive treatment option by increasing the density of anorganic bone mineral. Yet it is unknown how bisphosphonates act on irradiated collagen cross-links, which play an essential role for the mechanical stability of bone. The aim of this study was to evaluate the effects of zoledronate on bone collagens and their cross-links after irradiation. The right femur of 37 rats was irradiated with a single dose of 9.5 Gy at a high dose rate using an afterloading machine. Half of the rats (n = 18) received additionally a single dose zoledronate (0.1 mg/kg body weight). Fourteen and 100 days after irradiation the femora were collected for histologic evaluation and determination of the collagen cross-links lysylpyridinoline, hydroxylysylpyridinoline, and hydroxyproline. The collagen types were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Fourteen days after treatment the lysylpyridinoline levels of all treatment groups were significantly lower compared to the untreated control. After 100 days, in the combined radiotherapy + zoledronate group significantly lower lysylpyridinoline values were determined (p = 0.009). Radiotherapy and/or zoledronate did not change significantly the level of hydroxylysylpyridinoline. The concentration of hydroxyproline was 14 days after irradiation significantly higher in the combined treatment group compared to the control. No significant differences were observed 100 days after treatment. Zoledronate does not have the ability to restore the physiological bone collagen cross-link levels after radiotherapy. However, this would be necessary for regaining the physiological mechanical stability of bone after irradiation and therefore to prevent effectively radiation-induced fractures.

Keywords

Bisphosphonate Bone Collagen Collagen cross-links Radiation-induced bone loss Radiotherapy 

References

  1. 1.
    Kondo H, Searby ND, Mojarrab R, Phillips J, Alwood J, Yumoto K, Almeida EA, Limoli CL, Globus RK (2009) Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts. Radiat Res 171:283–289PubMedCrossRefGoogle Scholar
  2. 2.
    Inoue Y, Miki C, Ojima E, Nomoto J, Kusunoki M (2003) Pelvic insufficiency factures after preoperative radiotherapy for rectal carcinoma. Int J Clin Oncol 8:336–339PubMedCrossRefGoogle Scholar
  3. 3.
    Schmeler KM, Jhingran A, Lyer RB, Sun CC, Eifel PJ, Soliman PT, Ramirez PT, Frumovitz M, Bodurka DC, Sood AK (2010) Pelvic fractures after radiotherapy for cervical cancer: implications for survivors. Cancer 116:625–630PubMedCrossRefGoogle Scholar
  4. 4.
    Grigsby PW, Roberts HL, Perez CA (1995) Femoral neck fracture following groin irradiation. Int J Radiat Oncol Biol Phys 32:63–67PubMedCrossRefGoogle Scholar
  5. 5.
    Stanic S, Bolke TP, Rule WG, Timmermann RD (2011) Rib fracture following stereotactic body radiotherapy: a potential pitfall. Clin Nucl Med 36:168–170CrossRefGoogle Scholar
  6. 6.
    Mose S, Pfitzner D, Rahn A, Nierhoff C, Schiemann M, Bottcher HD (2000) Role of radiotherapy in the treatment of multiple myeloma. Strahlenther Onkol 176:506–512PubMedCrossRefGoogle Scholar
  7. 7.
    Ogino I, Okamato N, Ono Y, Kitamura T, Nakayama H (2003) Pelvic insuffiency fractures in postmenopausal woman with advanced cervical cancer treated by radiotherapy. Radiother Oncol 68:61–67PubMedCrossRefGoogle Scholar
  8. 8.
    Pierce SM, Recht A, Lingos TI, Abner A, Vicini F, Silver B, Herzog A, Harris JR (1992) Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys 23:915–923PubMedCrossRefGoogle Scholar
  9. 9.
    Dudziak ME, Saadeh PB, Mehrara BJ, Steinbrech DS, Greenwald JA, Gittes GK, Longaker MT (2000) The effects of ionizing radiation on osteoblast-like cells in vitro. Plast Reconstr Surg 106:1049–1061PubMedCrossRefGoogle Scholar
  10. 10.
    Szymcyk KH, Shapiro IM, Adams CS (2004) Ionizing radiation sensitizes bone cells to apoptosis. Bone 34:148–156CrossRefGoogle Scholar
  11. 11.
    Willey JS, Lloyd SA, Robbins ME, Bourland JD, Smith-Sielicki H, Bowman LC, Norrdin RW, Bateman TA (2008) Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat Res 170:388–392PubMedCrossRefGoogle Scholar
  12. 12.
    Williams HJ, Davies AM (2006) The effect of X-rays on bone: a pictorial review. Eur Radiol 16:619–633PubMedCrossRefGoogle Scholar
  13. 13.
    Dambrain R, Dhem A, Gueulette J, Wambersie A (1988) Bone vitality in the cat’s irradiated jaw. Histological study. Strahlenther Onkol 164:351–356PubMedGoogle Scholar
  14. 14.
    Bluemke DA, Fishman EK, Scott WW (1994) Skeletal complications of radiation therapy. Radiographics 14:111–121PubMedGoogle Scholar
  15. 15.
    Desmons S, Heger M, Delfosse C, Falgayrac G, Sarrazin T, Delattre C, Catros S, Mordon S, Penel G (2009) A preliminary investigation into the effects of X-ray radiation on superficial cranial vascularization. Calcif Tissue Int 84:379–387PubMedCrossRefGoogle Scholar
  16. 16.
    Açil Y, Springer IN, Niehoff P, Gassling V, Warnke PH, Açmaz S, Sönmez TT, Kimmig B, Lefteris V, Wiltfang J (2007) Proof of direct radiogenic destruction of collagen in vitro. Strahlenther Onkol 183:374–379PubMedCrossRefGoogle Scholar
  17. 17.
    Arrington SA, Fisher ER, Willick GE, Mann KA, Allen MJ (2010) Anabolic and antiresorptive drugs improve trabecular microarchitecture and reduce fracture risk following radiation therapy. Calcif Tissue Int 87:263–272PubMedCrossRefGoogle Scholar
  18. 18.
    Willey JS, Livingston EW, Robbings ME, Bourland JD, Tirado-Lee L, Smith-Sielicki H, Bateman TA (2010) Risedronate prevents early radiation-induced osteoporosis in mice at multiple skeletal locations. Bone 46:101–111PubMedCrossRefGoogle Scholar
  19. 19.
    Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL (1986) Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol 102:1164–1172PubMedCrossRefGoogle Scholar
  20. 20.
    Açil Y, Brinckmann J, Notbohm H, Müller PK, Batge B (1996) Changes with age in the urinary excretion of hydroxylyslylpridinoline (HP) and lysylpyridinoline (LP). Scand J Clin Lab Invest 56:275–283PubMedCrossRefGoogle Scholar
  21. 21.
    Springer ING, Terheyden H, Dunsche A, Czech N, Tiemann M, Hedderich J, Açil Y (2003) Collagen crosslink excretion and staging of oral cancer. Br J Cancer 88:1105–1110PubMedCrossRefGoogle Scholar
  22. 22.
    Açil Y, Brinckmann J, Behrens P, Müller PK, Bätge B (1997) Semipreparative isolation of collagen types I, II, III and V by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and electroelution. J Chromatogr A 758:313–318PubMedCrossRefGoogle Scholar
  23. 23.
    Açil Y, Müller PK (1994) A rapid method for the isolation of the mature crosslinks, hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP). J Chromatogr A 664:183–188PubMedCrossRefGoogle Scholar
  24. 24.
    Hui SK, Fairchild GR, Kidder LS, Sharma M, Bhattacharya M, Jackson S, Le C, Yee D (2012) Skeletal remodeling following clinically relevant radiation-induced bone damage treated with zoledronic acid. Calcif Tissue Int 90:40–49PubMedCrossRefGoogle Scholar
  25. 25.
    Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31:8–11PubMedCrossRefGoogle Scholar
  26. 26.
    Woodhead-Galloway J (1980) Collagen: The anatomy of a protein. E. Arnold, LondonGoogle Scholar
  27. 27.
    Niehoff P, Springer IN, Açil Y, Lang A, Marget M, Roldan JC, Köppe K, Warnke PH, Kimmig B, Wiltfang J (2008) HDR brachytherapy irradiation of the jaw—as a new experimental model of radiogenic bone damage. J Craniomaxillofac Surg 36:203–209PubMedCrossRefGoogle Scholar
  28. 28.
    Willems NM, Langenbach GE, Everts V, Mulder L, Grünheid T, Bank RA, Zentner A, van Eijden TM (2012) Age-related changes in collagen properties and mineralization in cancellous and cortical bone in the porcine mandibular condyle. Calcif Tissue Int 86:307–312CrossRefGoogle Scholar
  29. 29.
    Gal TJ, Munoz-Antonia T, Muro-Cacho CA, Klotch DW (2000) Radiation effects on osteoblasts in vitro: a potential role in osteoradionecrosis. Arch Otolaryngol Head Neck Surg 126:1124–1128PubMedGoogle Scholar
  30. 30.
    Shoji S, Tabuchi M, Miyazawa K, Yabumoto T, Tanaka M, Kadota M, Maeda H, Goto S (2010) Bisphosphonate inhibits bone turnover in OPG(−/−) mice via a depressive effect on both osteoclasts and osteoblasts. Calcif Tissue Int 87:181–192PubMedCrossRefGoogle Scholar
  31. 31.
    Orriss IR, Key ML, Colston KW, Arnett TR (2009) Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106:109–118PubMedCrossRefGoogle Scholar
  32. 32.
    Idris AI, Rojas J, Greig IR, van’t Hof RJ, Ralston SH (2008) Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82:191–201PubMedCrossRefGoogle Scholar
  33. 33.
    Riekki R, Jukkola A, Sassi ML, Hoyhta M, Kallioinen M, Risteli J, Oikarienen A (2000) Modulation of skin collagen metabolism by irradiation: collagen synthesis is increased in irradiated human skin. Br J Dermatol 142:874–880PubMedCrossRefGoogle Scholar
  34. 34.
    Yano H, Hamanaka R, Nakamura M, Sumiyoshi H, Matsuo N, Yoshioka H (2012) Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis. Biochem Biophys Res Commun 418:457–463PubMedCrossRefGoogle Scholar
  35. 35.
    Riekki R, Parikka M, Jukkola A, Salo T, Risteli J, OiIkarinen A (2002) Increased expression of collagen types I and III in human skin as a consequence of radiotherapy. Arch Dermatol Res 294:178–184PubMedCrossRefGoogle Scholar
  36. 36.
    Xu W, Xu L, Chen M, Mao YT, Xie ZG, Wu SL, Dong QR (2012) The effects of low dose X-irradiation on osteoblastic MC3T3-E1 cells in vitro. BMC Musculoskelet Disord 8:13–94Google Scholar
  37. 37.
    Yang MQ, Kjellen E, Hakansson CH, Palmegren M (1996) The effect of ionizing irradiation of the type I collagen of the tail in growing mice: a histology and electron microscopy study. Scanning Microsc 10:821–831PubMedGoogle Scholar
  38. 38.
    Liu BC, Harrel R, Davis RH, Dresden MH, Spira M (1989) The effect of gamma irradiation on injectable human amnion collagen. J Biomed Mater Res 23:833–844PubMedCrossRefGoogle Scholar
  39. 39.
    Niehoff P, Wiltfang J, Springer IN, Weppner N, Kimmig B, Açil Y (2006) Increased excretion of collagen crosslinks in irradiated patients indicates destruction of collagen. Int J Radiat Biol 82:503–509PubMedCrossRefGoogle Scholar
  40. 40.
    Nakaya H, Osawa G, Iwasaki N, Cochran DL, Kamoi K, Oates TW (2000) Effects of bisphosphonate on matrix metalloproteinase enzymes in human periodontal ligament cells. J Periodontol 71:1158–1166PubMedCrossRefGoogle Scholar
  41. 41.
    Corey E, Brown LG, Quinn JE, Poot M, Roudier MP, Higano CS, Vessella RL (2003) Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin Cancer Res 9:295–306PubMedGoogle Scholar
  42. 42.
    Nyman JS, Lynch CC, Perrien DS, Thiolloy S, O’Quinn EC, Patil CA, Bi X, Pharr GM, Mahadevan-Jansen A, Mundy GR (2011) Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res 26:1252–1260PubMedCrossRefGoogle Scholar
  43. 43.
    Birkedahl-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedahl-Hansen B, DeCarlo A, Engler JA (1993) Matrix metalloproteinases. a review. Crit Rev Oral Biol Med 4:197–250Google Scholar
  44. 44.
    Vargova V, Pytliak M, Mechirova V (2012) Matrix metalloproteinases. EXS 103:1–33PubMedGoogle Scholar
  45. 45.
    Banse X, Devogelaer JP, Lafosse A, Sims TJ, Grynpas M, Bailey AJ (2002) Cross-link profile of bone collagen correlates with structural organization of trabeculae. Bone 31:70–76PubMedCrossRefGoogle Scholar
  46. 46.
    Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yahya Açil
    • 1
  • Matthias Gierloff
    • 1
  • Carolin Behrens
    • 1
  • Björn Möller
    • 1
  • Volker Gassling
    • 1
  • Peter Niehoff
    • 2
  • Jörg Wiltfang
    • 1
  • Maciej Simon
    • 1
  1. 1.Department of Oral and Maxillofacial SurgeryUK-SHCampus KielGermany
  2. 2.Department of Radiotherapy (Radiooncology)UK S-HCampus KielGermany

Personalised recommendations