Calcified Tissue International

, Volume 92, Issue 1, pp 28–34

Increased Bone Mineral Density and Decreased Prevalence of Osteoporosis in Cervical Ossification of the Posterior Longitudinal Ligament: A Case–Control Study

Original Research
  • 362 Downloads

Abstract

Bone and mineral metabolism has been reported to affect the development of the ossification of the posterior longitudinal ligament (OPLL). The aim of this study was to compare bone mineral densities (BMD) and rate of osteoporosis between cervical OPLL and a matched control group. We also investigated the correlation of BMD with the number of cervical spine levels involved with OPLL. From 1999 to August 2011, 178 patients with cervical OPLL underwent dual-energy X-ray absorptiometry (DXA) at our institute. The control group was age-, sex-, and body mass index (BMI)–matched with the OPLL group on a 1:1 basis. BMD was measured at the lumbar spine (L1–L4), femoral neck, and total femur using DXA. Age, sex, and BMI were the same in the OPLL and control groups. BMDs of the OPLL and control groups were significantly different in the lumbar spine, femoral neck, and total femur (p = 0.0001, 0.0001, 0.009, respectively). Rates of osteopenia and osteoporosis were lower in the OPLL than in the control group according to lumbar spine and femoral neck DXA (p = 0.01, 0.03, respectively). A positive correlation was observed between lumbar spine BMD and the number of cervical spine levels involved with OPLL (p = 0.004).

Keywords

Ossification of the posterior longitudinal ligament Case–control study Bone mineral density Spine Osteoporosis 

References

  1. 1.
    Saetia K, Cho D, Lee S, Kim DH, Kim SD (2011) Ossification of the posterior longitudinal ligament: a review. Neurosurg Focus 30(3):E1PubMedCrossRefGoogle Scholar
  2. 2.
    Tsuyama N (1984) Ossification of the posterior longitudinal ligament of the spine. Clin Orthop Relat Res 184:71–84PubMedGoogle Scholar
  3. 3.
    Matsui H, Yudoh K, Tsuji H (1996) Significance of serum levels of type I procollagen peptide and intact osteocalcin and bone mineral density in patients with ossification of the posterior longitudinal ligaments. Calcif Tissue Int 59(5):397–400PubMedCrossRefGoogle Scholar
  4. 4.
    Tsukahara S, Ikeda R, Goto S, Yoshida K, Mitsumori R, Sakamoto Y, Tajima A, Yokoyama T, Toh S, Furukawa KI, Inoue I (2006) Tumour necrosis factor alpha-stimulated gene-6 inhibits osteoblastic differentiation of human mesenchymal stem cells induced by osteogenic differentiation medium and BMP-2. Biochem J 398:595–603PubMedCrossRefGoogle Scholar
  5. 5.
    Goto K, Yamazaki M, Tagawa M, Goto S, Kon T, Moriya H, Fujimura S (1998) Involvement of insulin-like growth factor I in development of ossification of the posterior longitudinal ligament of the spine. Calcif Tissue Int 62(2):158–165PubMedCrossRefGoogle Scholar
  6. 6.
    Hirai N, Ikata T, Murase M, Morita T, Katoh S (1995) Bone mineral density of the lumbar spine in patients with ossification of the posterior longitudinal ligament of the cervical spine. J Spinal Disord 8(5):337–341PubMedCrossRefGoogle Scholar
  7. 7.
    Yamauchi T, Taketomi E, Matsunaga S, Sakou T (1999) Bone mineral density in patients with ossification of the posterior longitudinal ligament in the cervical spine. J Bone Miner Metab 17(4):296–300PubMedCrossRefGoogle Scholar
  8. 8.
    Morio Y, Yamamoto K, Kishimoto H, Hagino H, Kuranobu K, Kagawa T (1993) Bone mineral density of the radius in patients with ossification of the cervical posterior longitudinal ligament. A longitudinal study. Spine (Phila Pa 1976) 18(16):2513–2516Google Scholar
  9. 9.
    Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141PubMedCrossRefGoogle Scholar
  10. 10.
    Matsunaga S, Sakou T (2012) Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine (Phila Pa 1976) 37(5):E309–E314Google Scholar
  11. 11.
    Kawaguchi Y, Urushisaki A, Seki S, Hori T, Asanuma Y, Kimura T (2011) Evaluation of ossification of the posterior longitudinal ligament by three-dimensional computed tomography and magnetic resonance imaging. Spine J 11(10):927–932PubMedCrossRefGoogle Scholar
  12. 12.
    Hasegawa K, Homma T (1997) Morphologic evaluation and surgical simulation of ossification of the posterior longitudinal ligament using helical computed tomography with three-dimensional and multiplanar reconstruction. Spine (Phila Pa 1976) 22(5):537–543Google Scholar
  13. 13.
    Chiba K, Kato Y, Tsuzuki N, Nagata K, Toyama Y, Iwasaki M, Yonenobu K (2005) Computer-assisted measurement of the size of ossification in patients with ossification of the posterior longitudinal ligament in the cervical spine. J Orthop Sci 10(5):451–456PubMedCrossRefGoogle Scholar
  14. 14.
    Lee DC, Campbell PP, Gilsanz V, Wren TA (2009) Contribution of the vertebral posterior elements in anterior–posterior DXA spine scans in young subjects. J Bone Miner Res 24(8):1398–1403PubMedCrossRefGoogle Scholar
  15. 15.
    Okada S, Maeda T, Saiwai H, Ohkawa Y, Shiba K, Iwamoto Y (2010) Ossification of the posterior longitudinal ligament of the lumbar spine: a case series. Neurosurgery 67(5):1311–1318PubMedCrossRefGoogle Scholar
  16. 16.
    Eun JP, Ma TZ, Lee WJ, Kim MG, Yoo MJ, Koh EJ, Choi HY, Kwak YG (2007) Comparative analysis of serum proteomes to discover biomarkers for ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 32(7):728–734Google Scholar
  17. 17.
    Jergas M, Breitenseher M, Gluer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10(7):1101–1110PubMedCrossRefGoogle Scholar
  18. 18.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259PubMedCrossRefGoogle Scholar
  19. 19.
    Yu W, Gluer CC, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5(6):433–439PubMedCrossRefGoogle Scholar
  20. 20.
    Schlenker RA, VonSeggen WW (1976) The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tissue Res 20(1):41–52PubMedCrossRefGoogle Scholar
  21. 21.
    Fitzpatrick LA, Dabrowski CE, Cicconetti G, Gordon DN, Fuerst T, Engelke K, Genant HK (2012) Ronacaleret, a calcium-sensing receptor antagonist, increases trabecular but not cortical bone in postmenopausal women. J Bone Miner Res 27(2):255–262PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of NeurosurgerySeoul National University College of MedicineSeoulSouth Korea
  2. 2.Neuroscience Research Institute, Seoul National University Medical Research CenterSeoulSouth Korea
  3. 3.Clinical Research Institute, Seoul National University HospitalSeoulSouth Korea

Personalised recommendations