Calcified Tissue International

, Volume 92, Issue 2, pp 151–162 | Cite as

Vitamin D and Its Role in Skeletal Muscle

Original Research

Abstract

This review discusses the clinical and laboratory studies that have examined a role of vitamin D in skeletal muscle. Many observational studies, mainly in older populations, indicate that vitamin D status is positively associated with muscle strength and physical performance and inversely associated with risk of falling. Clinical trials of vitamin D supplementation in older adults with low vitamin D status mostly report improvements in muscle performance and reductions in falls. The underlying mechanisms are probably both indirect via calcium and phosphate and direct via activation of the vitamin D receptor (VDR) on muscle cells by 1,25-dihydroxyvitamin D [1,25(OH)2D]. VDR activation at the genomic level regulates transcription of genes involved in calcium handling and muscle cell differentiation and proliferation. A putative membrane-associated VDR activates intracellular signaling pathways also involved in calcium handling and signaling and myogenesis. Additional evidence comes from VDR knockout mouse models with abnormal muscle morphology and physical function, and VDR polymorphisms which are associated with differences in muscle strength. Recent identification of CYP27B1 bioactivity in skeletal muscle cells and in regenerating adult mouse muscle lends support to the direct action of both 25-hydroxyvitamin D and 1,25(OH)2D in muscle. Despite these research advances, many questions remain. Further research is needed to fully characterize molecular mechanisms of vitamin D action on muscle cells downstream of the VDR, describe the effects on muscle morphology and contractility, and determine whether these molecular and cellular effects translate into clinical improvements in physical function.

Keywords

Skeletal muscle Vitamin D Vitamin D receptor 

Notes

Acknowledgments

This material is based upon work supported by the U.S. Department of Agriculture, Agricultural Research Service, under agreement No. 58-1950-7-707. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

References

  1. 1.
    DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80:1689S–1696SPubMedGoogle Scholar
  2. 2.
    Reichel H, Koeffler HP, Norman AW (1989) The role of the vitamin D endocrine system in health and disease. New Engl J Med 320:980–991PubMedCrossRefGoogle Scholar
  3. 3.
    Walters MR (1992) Newly identified actions of the vitamin D endocrine system. Endocr Rev 13:719–764PubMedGoogle Scholar
  4. 4.
    Bikle DD (2010) Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol Metab 21:375–384PubMedCrossRefGoogle Scholar
  5. 5.
    Boland R (1986) Role of vitamin D in skeletal muscle function. Endocr Rev 7:434–448PubMedCrossRefGoogle Scholar
  6. 6.
    Visser M, Deeg DJ, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772PubMedCrossRefGoogle Scholar
  7. 7.
    Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985PubMedCrossRefGoogle Scholar
  8. 8.
    Schubert L, DeLuca HF (2010) Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys 500:157–161PubMedCrossRefGoogle Scholar
  9. 9.
    Simpson RU, Thomas GA, Arnold AJ (1985) Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle. J Biol Chem 260:8882–8891PubMedGoogle Scholar
  10. 10.
    Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB, Dick W (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33:19–24PubMedCrossRefGoogle Scholar
  11. 11.
    Dent CE, Richens A, Rowe DJ, Stamp TC (1970) Osteomalacia with long-term anticonvulsant therapy in epilepsy. Br Med J 4:69–72PubMedCrossRefGoogle Scholar
  12. 12.
    Smith R, Stern G (1967) Myopathy, osteomalacia and hyperparathyroidism. Brain 90:593–602PubMedCrossRefGoogle Scholar
  13. 13.
    Prineas JW, Mason AS, Henson RA (1965) Myopathy in metabolic bone disease. Br Med J 1:1034–1036PubMedCrossRefGoogle Scholar
  14. 14.
    Marsden CD, Reynolds EH, Parsons V, Harris R, Duchen L (1973) Myopathy associated with anticonvulsant osteomalacia. Br Med J 4:526–527PubMedCrossRefGoogle Scholar
  15. 15.
    Smith R, Stern G (1969) Muscular weakness in osteomalacia and hyperparathyroidism. J Neurol Sci 8:511–520PubMedCrossRefGoogle Scholar
  16. 16.
    Wassner SJ, Li JB, Sperduto A, Norman ME (1983) Vitamin D deficiency, hypocalcemia, and increased skeletal muscle degradation in rats. J Clin Invest 72:102–112PubMedCrossRefGoogle Scholar
  17. 17.
    Gloth FM 3rd, Tobin JD, Sherman SS, Hollis BW (1991) Is the recommended daily allowance for vitamin D too low for the homebound elderly? J Am Geriatr Soc 39:137–141PubMedGoogle Scholar
  18. 18.
    Schott GD, Wills MR (1976) Muscle weakness in osteomalacia. Lancet 1(7960):626–629PubMedCrossRefGoogle Scholar
  19. 19.
    Skaria J, Katiyar BC, Srivastava TP, Dube B (1975) Myopathy and neuropathy associated with osteomalacia. Acta Neurol Scand 51:37–58PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshikawa S, Nakamura T, Tanabe H, Imamura T (1979) Osteomalacic myopathy. Endocrinol Jpn 26:65–72PubMedCrossRefGoogle Scholar
  21. 21.
    Palmucci L, Bertolotto A, Doriguzzi C, Mongini T, Coda R (1982) Osteomalacic myopathy in a case of diffuse nodular lipomatosis of the small bowel. Acta Neurol Belgica 82:65–71Google Scholar
  22. 22.
    McComas A (1996) Skeletal muscle. Form and function. Human Kinetics Publishers, ChampaignGoogle Scholar
  23. 23.
    Gilsanz V, Kremer A, Mo AO, Wren TA, Kremer R (2010) Vitamin D status and its relation to muscle mass and muscle fat in young women. J Clin Endocrinol Metab 95:1595–1601PubMedCrossRefGoogle Scholar
  24. 24.
    Lazaro RP, Kirshner HS (1980) Proximal muscle weakness in uremia. Case reports and review of the literature. Arch Neurol 37:555–558PubMedCrossRefGoogle Scholar
  25. 25.
    Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D (1974) Myopathy in chronic renal failure. Q J Med 43:509–524PubMedGoogle Scholar
  26. 26.
    Tague SE, Clarke GL, Winter MK, McCarson KE, Wright DE, Smith PG (2011) Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci 31:13728–13738PubMedCrossRefGoogle Scholar
  27. 27.
    Sorensen OH, Lund B, Saltin B, Lund B, Andersen RB, Hjorth L, Melsen F, Mosekilde L (1979) Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond) 56:157–161Google Scholar
  28. 28.
    Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20:187–192PubMedCrossRefGoogle Scholar
  29. 29.
    Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or = 60 y. Am J Clin Nutr 80:752–758PubMedGoogle Scholar
  30. 30.
    Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J, Knol DL, Lips P (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065PubMedCrossRefGoogle Scholar
  31. 31.
    Kuchuk NO, Pluijm SM, van Schoor NM, Looman CW, Smit JH, Lips P (2009) Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab 94:1244–1250PubMedCrossRefGoogle Scholar
  32. 32.
    Houston DK, Tooze JA, Davis CC, Chaves PH, Hirsch CH, Robbins JA, Arnold AM, Newman AB, Kritchevsky SB (2011) Serum 25-hydroxyvitamin D and physical function in older adults: the Cardiovascular Health Study All Stars. J Am Geriatr Soc 59:1793–1801PubMedCrossRefGoogle Scholar
  33. 33.
    Chan R, Chan D, Woo J, Ohlsson C, Mellstrom D, Kwok T, Leung PC (2012) Not all elderly people benefit from vitamin D supplementation with respect to physical function: results from the Osteoporotic Fractures in Men Study, Hong Kong. J Am Geriatr Soc 60:290–295PubMedCrossRefGoogle Scholar
  34. 34.
    Ceglia L, Chiu GR, Harris SS, Araujo AB (2011) Serum 25-hydroxyvitamin D concentration and physical function in adult men. Clin Endocrinol (Oxf) 74:370–376CrossRefGoogle Scholar
  35. 35.
    Ward KA, Das G, Berry JL, Roberts SA, Rawer R, Adams JE, Mughal Z (2009) Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab 94:559–563PubMedCrossRefGoogle Scholar
  36. 36.
    Foo LH, Zhang Q, Zhu K, Ma G, Hu X, Greenfield H, Fraser DR (2009) Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. J Nutr 139:1002–1007PubMedCrossRefGoogle Scholar
  37. 37.
    Allali F, El Aichaoui S, Khazani H, Benyahia B, Saoud B, El Kabbaj S, Bahiri R, Abouqal R, Hajjaj-Hassouni N (2009) High prevalence of hypovitaminosis D in Morocco: relationship to lifestyle, physical performance, bone markers, and bone mineral density. Semin Arthritis Rheum 38:444–451PubMedCrossRefGoogle Scholar
  38. 38.
    Garnero P, Munoz F, Sornay-Rendu E, Delmas PD (2007) Associations of vitamin D status with bone mineral density, bone turnover, bone loss and fracture risk in healthy postmenopausal women. The OFELY study. Bone 40:716–722PubMedCrossRefGoogle Scholar
  39. 39.
    Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H (2009) Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 20:315–322PubMedCrossRefGoogle Scholar
  40. 40.
    Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C (2000) Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J Bone Miner Res 15:1113–1118PubMedCrossRefGoogle Scholar
  41. 41.
    Bischoff HA, Stahelin HB, Dick W, Akos R, Knecht M, Salis C, Nebiker M, Theiler R, Pfeifer M, Begerow B, Lew RA, Conzelmann M (2003) Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res 18:343–351PubMedCrossRefGoogle Scholar
  42. 42.
    Dhesi JK, Jackson SH, Bearne LM, Moniz C, Hurley MV, Swift CG, Allain TJ (2004) Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 33:589–595PubMedCrossRefGoogle Scholar
  43. 43.
    Kenny AM, Biskup B, Robbins B, Marcella G, Burleson JA (2003) Effects of vitamin D supplementation on strength, physical function, and health perception in older, community-dwelling men. J Am Geriatr Soc 51:1762–1767PubMedCrossRefGoogle Scholar
  44. 44.
    Latham NK, Anderson CS, Lee A, Bennett DA, Moseley A, Cameron ID (2003) A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). J Am Geriatr Soc 51:291–299PubMedCrossRefGoogle Scholar
  45. 45.
    Brunner RL, Cochrane B, Jackson RD, Larson J, Lewis C, Limacher M, Rosal M, Shumaker S, Wallace R (2008) Calcium, vitamin D supplementation, and physical function in the Women’s Health Initiative. J Am Diet Assoc 108:1472–1479PubMedCrossRefGoogle Scholar
  46. 46.
    Lips P, Binkley N, Pfeifer M, Recker R, Samanta S, Cohn DA, Chandler J, Rosenberg E, Papanicolaou DA (2010) Once-weekly dose of 8400 IU vitamin D(3) compared with placebo: effects on neuromuscular function and tolerability in older adults with vitamin D insufficiency. Am J Clin Nutr 91:985–991PubMedCrossRefGoogle Scholar
  47. 47.
    Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL (2011) Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22:859–871PubMedGoogle Scholar
  48. 48.
    Muir SW, Montero-Odasso M (2011) Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59:2291–2300PubMedCrossRefGoogle Scholar
  49. 49.
    Faulkner KA, Cauley JA, Zmuda JM, Landsittel DP, Newman AB, Studenski SA, Redfern MS, Ensrud KE, Fink HA, Lane NE, Nevitt MC (2006) Higher 1,25-dihydroxyvitamin D3 concentrations associated with lower fall rates in older community-dwelling women. Osteoporos Int 17:1318–1328PubMedCrossRefGoogle Scholar
  50. 50.
    Suzuki T, Kwon J, Kim H, Shimada H, Yoshida Y, Iwasa H, Yoshida H (2008) Low serum 25-hydroxyvitamin D levels associated with falls among Japanese community-dwelling elderly. J Bone Miner Res 23:1309–1317PubMedCrossRefGoogle Scholar
  51. 51.
    Flicker L, Mead K, MacInnis RJ, Nowson C, Scherer S, Stein MS, Thomasx J, Hopper JL, Wark JD (2003) Serum vitamin D and falls in older women in residential care in Australia. J Am Geriatr Soc 51:1533–1538PubMedCrossRefGoogle Scholar
  52. 52.
    Stein MS, Wark JD, Scherer SC, Walton SL, Chick P, Di Carlantonio M, Zajac JD, Flicker L (1999) Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J Am Geriatr Soc 47:1195–1201PubMedGoogle Scholar
  53. 53.
    Dhesi JK, Bearne LM, Moniz C, Hurley MV, Jackson SH, Swift CG, Allain TJ (2002) Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status. J Bone Miner Res 17:891–897PubMedCrossRefGoogle Scholar
  54. 54.
    Michael YL, Whitlock EP, Lin JS, Fu R, O’Connor EA, Gold R (2010) Primary care-relevant interventions to prevent falling in older adults: a systematic evidence review for the US Preventive Services Task Force. Ann Intern Med 153:815–825PubMedGoogle Scholar
  55. 55.
    Murad MH, Elamin KB, Abu Elnour NO, Elamin MB, Alkatib AA, Fatourechi MM, Almandoz JP, Mullan RJ, Lane MA, Liu H, Erwin PJ, Hensrud DD, Montori VM (2011) Clinical review. The effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2997–3006PubMedCrossRefGoogle Scholar
  56. 56.
    56. Gillespie LD, Robertson MC, Gillespie WJ, Lamb SE, Gates S, Cumming RG, Rowe BH (2009) Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev (2):CD007146Google Scholar
  57. 57.
    Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58PubMedCrossRefGoogle Scholar
  58. 58.
    Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, Wong JB, Egli A, Kiel DP, Henschkowski J (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ (Clin Res Ed) 339:b3692CrossRefGoogle Scholar
  59. 59.
    Bischoff-Ferrari HA, Dawson-Hughes B, Platz A, Orav EJ, Stahelin HB, Willett WC, Can U, Egli A, Mueller NJ, Looser S, Bretscher B, Minder E, Vergopoulos A, Theiler R (2010) Effect of high-dosage cholecalciferol and extended physiotherapy on complications after hip fracture: a randomized controlled trial. Arch Intern Med 170:813–820PubMedCrossRefGoogle Scholar
  60. 60.
    Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303:1815–1822PubMedCrossRefGoogle Scholar
  61. 61.
    Rodman JS, Baker T (1978) Changes in the kinetics of muscle contraction in vitamin D–depleted rats. Kidney Int 13:189–193PubMedCrossRefGoogle Scholar
  62. 62.
    Curry OB, Basten JF, Francis MJ, Smith R (1974) Calcium uptake by sarcoplasmic reticulum of muscle from vitamin D-deficient rabbits. Nature 249:83–84PubMedCrossRefGoogle Scholar
  63. 63.
    Matthews C, Heimberg KW, Ritz E, Agostini B, Fritzsche J, Hasselbach W (1977) Effect of 1,25-dihydroxycholecalciferol on impaired calcium transport by the sarcoplasmic reticulum in experimental uremia. Kidney Int 11:227–235PubMedCrossRefGoogle Scholar
  64. 64.
    Birge SJ, Haddad JG (1975) 25-Hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest 56:1100–1107PubMedCrossRefGoogle Scholar
  65. 65.
    Costa EM, Blau HM, Feldman D (1986) 1,25-Dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology 119:2214–2220PubMedCrossRefGoogle Scholar
  66. 66.
    Ceglia L, da Silva Morais M, Park LK, Morris E, Harris SS, Bischoff-Ferrari HA, Fielding RA, Dawson-Hughes B (2010) Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle. J Mol Histol 41:137–142PubMedCrossRefGoogle Scholar
  67. 67.
    Srikuea R, Zhang X, Park-Sarge OK, Esser KA (2012) VDR and CYP27B1 are expressed in c2c12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. Am J Physiol Cell Physiol 303:C396–C405PubMedCrossRefGoogle Scholar
  68. 68.
    Dusso AS, Brown AJ, Slatopolsky E (2005) Vitamin D. Am J Physiol Renal Physiol 289:F8–F28PubMedCrossRefGoogle Scholar
  69. 69.
    Pike JW (1991) Vitamin D3 receptors: structure and function in transcription. Annu Rev Nutr 11:189–216PubMedCrossRefGoogle Scholar
  70. 70.
    Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85:3294–3298PubMedCrossRefGoogle Scholar
  71. 71.
    McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O’Malley BW (1987) Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235:1214–1217PubMedCrossRefGoogle Scholar
  72. 72.
    DeLuca HF (1988) The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J 2:224–236PubMedGoogle Scholar
  73. 73.
    Haussler MR, Mangelsdorf DJ, Komm BS, Terpening CM, Yamaoka K, Allegretto EA, Baker AR, Shine J, McDonnell DP, Hughes M et al (1988) Molecular biology of the vitamin D hormone. Recent Prog Horm Res 44:263–305PubMedGoogle Scholar
  74. 74.
    Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229PubMedCrossRefGoogle Scholar
  75. 75.
    Nemere I, Farach-Carson MC (1998) Membrane receptors for steroid hormones: a case for specific cell surface binding sites for vitamin D metabolites and estrogens. Biochem Biophys Res Commun 248:443–449PubMedCrossRefGoogle Scholar
  76. 76.
    Baran DT, Quail JM, Ray R, Leszyk J, Honeyman T (2000) Annexin II is the membrane receptor that mediates the rapid actions of 1alpha,25-dihydroxyvitamin D(3). J Cell Biochem 78:34–46PubMedCrossRefGoogle Scholar
  77. 77.
    Capiati D, Benassati S, Boland RL (2002) 1,25(OH)2-Vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cells. J Cell Biochem 86:128–135PubMedCrossRefGoogle Scholar
  78. 78.
    Buitrago C, Boland R (2010) Caveolae and caveolin-1 are implicated in 1alpha,25(OH)(2)-vitamin D(3)-dependent modulation of Src, MAPK cascades and VDR localization in skeletal muscle cells. J Steroid Biochem Mol Biol 121:169–175PubMedCrossRefGoogle Scholar
  79. 79.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefGoogle Scholar
  80. 80.
    Galbiati F, Razani B, Lisanti MP (2001) Emerging themes in lipid rafts and caveolae. Cell 106:403–411PubMedCrossRefGoogle Scholar
  81. 81.
    Boland R, Norman A, Ritz E, Hasselbach W (1985) Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochem Biophys Res Commun 128:305–311PubMedCrossRefGoogle Scholar
  82. 82.
    Wang Y, DeLuca HF (2011) Is the vitamin D receptor found in muscle? Endocrinology 152:354–363PubMedCrossRefGoogle Scholar
  83. 83.
    Ceglia LMM, Park L, Harris S, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B (2008) Immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle fibers. Osteoporos Int 19(suppl 2):S418Google Scholar
  84. 84.
    Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S, Matsumoto T (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144:5138–5144PubMedCrossRefGoogle Scholar
  85. 85.
    Burne TH, McGrath JJ, Eyles DW, Mackay-Sim A (2005) Behavioural characterization of vitamin D receptor knockout mice. Behav Brain Res 157:299–308PubMedCrossRefGoogle Scholar
  86. 86.
    Song Y, Kato S, Fleet JC (2003) Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. J Nutr 133:374–380PubMedGoogle Scholar
  87. 87.
    Kalueff AV, Lou YR, Laaksi I, Tuohimaa P (2004) Impaired motor performance in mice lacking neurosteroid vitamin D receptors. Brain Res Bull 64:25–29PubMedCrossRefGoogle Scholar
  88. 88.
    Minasyan A, Keisala T, Zou J, Zhang Y, Toppila E, Syvala H, Lou YR, Kalueff AV, Pyykko I, Tuohimaa P (2009) Vestibular dysfunction in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 114:161–166PubMedCrossRefGoogle Scholar
  89. 89.
    Boland R, de Boland AR, Marinissen MJ, Santillan G, Vazquez G, Zanello S (1995) Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol 114:1–8PubMedCrossRefGoogle Scholar
  90. 90.
    Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183PubMedCrossRefGoogle Scholar
  91. 91.
    Lila D, Susana Z, Ricardo B (1994) Induction of a calbindin-D9K-like protein in avian muscle cells by 1,25-dihydroxy-vitamin D3. Biochem Mol Biol Int 32:859–867PubMedGoogle Scholar
  92. 92.
    Drittanti LN, Boland RL, de Boland AR (1989) Induction of specific proteins in cultured skeletal muscle cells by 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1012:16–23PubMedCrossRefGoogle Scholar
  93. 93.
    Zanello SB, Boland RL, Norman AW (1995) cDNA sequence identity of a vitamin D-dependent calcium-binding protein in the chick to calbindin D-9K. Endocrinology 136:2784–2787PubMedCrossRefGoogle Scholar
  94. 94.
    Brunner A, de Boland AR (1990) 1,25-Dihydroxyvitamin D3 affects the synthesis, phosphorylation and in vitro calmodulin binding of myoblast cytoskeletal proteins. Z Naturforsch C 45:1156–1160PubMedGoogle Scholar
  95. 95.
    Drittanti L, de Boland AR, Boland R (1990) Stimulation of calmodulin synthesis in proliferating myoblasts by 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol 74:143–153PubMedCrossRefGoogle Scholar
  96. 96.
    Bellido T, Boland R (1991) Effects of 1,25-dihydroxy-vitamin D3 on phosphate accumulation by myoblasts. Horm Metab Res 23:113–116PubMedCrossRefGoogle Scholar
  97. 97.
    Inoue Y, Segawa H, Kaneko I, Yamanaka S, Kusano K, Kawakami E, Furutani J, Ito M, Kuwahata M, Saito H, Fukushima N, Kato S, Kanayama HO, Miyamoto K (2005) Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J 390:325–331PubMedCrossRefGoogle Scholar
  98. 98.
    Giuliani DL, Boland RL (1984) Effects of vitamin D3 metabolites on calcium fluxes in intact chicken skeletal muscle and myoblasts cultured in vitro. Calcif Tissue Int 36:200–205PubMedCrossRefGoogle Scholar
  99. 99.
    Drittanti L, de Boland AR, Boland R (1989) Modulation of DNA synthesis in cultured muscle cells by 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1014:112–119PubMedCrossRefGoogle Scholar
  100. 100.
    Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2 Vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152:2976–2986PubMedCrossRefGoogle Scholar
  101. 101.
    Dirks-Naylor AJ, Lennon-Edwards S (2011) The effects of vitamin D on skeletal muscle function and cellular signaling. J Steroid Biochem Mol Biol 125:159–168PubMedCrossRefGoogle Scholar
  102. 102.
    Williams TM, Lisanti MP (2004) The Caveolin genes: from cell biology to medicine. Ann Med 36:584–595PubMedCrossRefGoogle Scholar
  103. 103.
    Buitrago C, Arango N, Boland R (2012) 1alpha,25(OH)(2)D(3)-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J Cell Biochem 113:1170–1181PubMedCrossRefGoogle Scholar
  104. 104.
    Zhang X, Zanello LP (2008) Vitamin D receptor-dependent 1 alpha,25(OH)2 vitamin D3–induced anti-apoptotic PI3K/AKT signaling in osteoblasts. J Bone Miner Res 23:1238–1248PubMedCrossRefGoogle Scholar
  105. 105.
    Selles J, Boland R (1991) Rapid stimulation of calcium uptake and protein phosphorylation in isolated cardiac muscle by 1,25-dihydroxyvitamin D3. Mol Cell Endocrinol 77:67–73PubMedCrossRefGoogle Scholar
  106. 106.
    de Boland AR, Boland RL (1987) Rapid changes in skeletal muscle calcium uptake induced in vitro by 1,25-dihydroxyvitamin D3 are suppressed by calcium channel blockers. Endocrinology 120:1858–1864PubMedCrossRefGoogle Scholar
  107. 107.
    Morelli S, Boland R, de Boland AR (1996) 1,25(OH)2-vitamin D3 stimulation of phospholipases C and D in muscle cells involves extracellular calcium and a pertussis-sensitive G protein. Mol Cell Endocrinol 122:207–211PubMedCrossRefGoogle Scholar
  108. 108.
    Vazquez G, Boland R, de Boland AR (1995) Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Biochim Biophys Acta 1269:91–97PubMedCrossRefGoogle Scholar
  109. 109.
    Capiati DA, Vazquez G, Tellez Inon MT, Boland RL (2000) Role of protein kinase C in 1,25(OH)(2)-vitamin D(3) modulation of intracellular calcium during development of skeletal muscle cells in culture. J Cell Biochem 77:200–212PubMedCrossRefGoogle Scholar
  110. 110.
    Vazquez G, de Boland AR, Boland RL (1997) 1 alpha,25-(OH)2-Vitamin D3 stimulates the adenylyl cyclase pathway in muscle cells by a GTP-dependent mechanism which presumably involves phosphorylation of G alpha i. Biochem Biophys Res Commun 234:125–128PubMedCrossRefGoogle Scholar
  111. 111.
    Vazquez G, de Boland AR (1996) Involvement of protein kinase C in the modulation of 1alpha,25-dihydroxy-vitamin D3-induced 45Ca2+ uptake in rat and chick cultured myoblasts. Biochim Biophys Acta 1310:157–162PubMedCrossRefGoogle Scholar
  112. 112.
    Vazquez G, de Boland AR, Boland R (1997) Stimulation of Ca2+ release-activated Ca2+ channels as a potential mechanism involved in non-genomic 1,25(OH)2-vitamin D3-induced Ca2+ entry in skeletal muscle cells. Biochem Biophys Res Commun 239:562–565PubMedCrossRefGoogle Scholar
  113. 113.
    Vazquez G, de Boland AR, Boland RL (1998) 1alpha,25-Dihydroxy-vitamin-D3-induced store-operated Ca2+ influx in skeletal muscle cells. Modulation by phospholipase c, protein kinase c, and tyrosine kinases. J Biol Chem 273:33954–33960PubMedCrossRefGoogle Scholar
  114. 114.
    Vazquez G, de Boland AR (1993) Stimulation of dihydropyridine-sensitive Ca2+ influx in cultured myoblasts by 1,25(OH)2-vitamin D3. Biochem Mol Biol Int 31:677–684PubMedGoogle Scholar
  115. 115.
    Nejentsev S, Godfrey L, Snook H, Rance H, Nutland S, Walker NM, Lam AC, Guja C, Ionescu-Tirgoviste C, Undlien DE, Ronningen KS, Tuomilehto-Wolf E, Tuomilehto J, Newport MJ, Clayton DG, Todd JA (2004) Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Hum Mol Genet 13:1633–1639PubMedCrossRefGoogle Scholar
  116. 116.
    Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 12:915–921PubMedCrossRefGoogle Scholar
  117. 117.
    Whitfield GK, Remus LS, Jurutka PW, Zitzer H, Oza AK, Dang HT, Haussler CA, Galligan MA, Thatcher ML, Encinas Dominguez C, Haussler MR (2001) Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 177:145–159PubMedCrossRefGoogle Scholar
  118. 118.
    Roth SM, Zmuda JM, Cauley JA, Shea PR, Ferrell RE (2004) Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. J Gerontol 59:10–15CrossRefGoogle Scholar
  119. 119.
    Windelinckx A, De Mars G, Beunen G, Aerssens J, Delecluse C, Lefevre J, Thomis MA (2007) Polymorphisms in the vitamin D receptor gene are associated with muscle strength in men and women. Osteoporos Int 18:1235–1242PubMedCrossRefGoogle Scholar
  120. 120.
    Hopkinson NS, Li KW, Kehoe A, Humphries SE, Roughton M, Moxham J, Montgomery H, Polkey MI (2008) Vitamin D receptor genotypes influence quadriceps strength in chronic obstructive pulmonary disease. Am J Clin Nutr 87:385–390PubMedGoogle Scholar
  121. 121.
    Geusens P, Vandevyver C, Vanhoof J, Cassiman JJ, Boonen S, Raus J (1997) Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res 12:2082–2088PubMedCrossRefGoogle Scholar
  122. 122.
    Onder G, Capoluongo E, Danese P, Settanni S, Russo A, Concolino P, Bernabei R, Landi F (2008) Vitamin D receptor polymorphisms and falls among older adults living in the community: results from the ilSIRENTE study. J Bone Miner Res 23:1031–1036PubMedCrossRefGoogle Scholar
  123. 123.
    Barr R, Macdonald H, Stewart A, McGuigan F, Rogers A, Eastell R, Felsenberg D, Gluer C, Roux C, Reid DM (2010) Association between vitamin D receptor gene polymorphisms, falls, balance and muscle power: results from two independent studies (APOSS and OPUS). Osteoporos Int 21:457–466PubMedCrossRefGoogle Scholar
  124. 124.
    Grundberg E, Brandstrom H, Ribom EL, Ljunggren O, Mallmin H, Kindmark A (2004) Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur J Endocrinol 150:323–328PubMedCrossRefGoogle Scholar
  125. 125.
    Bahat G, Saka B, Erten N, Ozbek U, Coskunpinar E, Yildiz S, Sahinkaya T, Karan MA (2010) BsmI polymorphism in the vitamin D receptor gene is associated with leg extensor muscle strength in elderly men. Aging Clin Exp Res 22:198–205PubMedGoogle Scholar
  126. 126.
    Zehnder D, Bland R, Walker EA, Bradwell AR, Howie AJ, Hewison M, Stewart PM (1999) Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in the human kidney. J Am Soc Nephrol 10:2465–2473PubMedGoogle Scholar
  127. 127.
    Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, Stoilov I (2003) Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys 414:91–100PubMedCrossRefGoogle Scholar
  128. 128.
    Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, Hewison M (2001) Extrarenal expression of 25-hydroxyvitamin D(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 86:888–894PubMedCrossRefGoogle Scholar
  129. 129.
    Lou YR, Molnar F, Perakyla M, Qiao S, Kalueff AV, St-Arnaud R, Carlberg C, Tuohimaa P (2010) 25-Hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand. J Steroid Biochem Mol Biol 118:162–170PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes, and MetabolismTufts Medical CenterBostonUSA
  2. 2.Bone Metabolism LaboratoryJean Mayer USDA Human Nutrition Research Center on Aging at Tufts UniversityBostonUSA

Personalised recommendations