Calcified Tissue International

, Volume 92, Issue 2, pp 140–150 | Cite as

Vitamin D and Bone Health in Childhood and Adolescence

  • T. WinzenbergEmail author
  • G. Jones
Original Research


Vitamin D plays a key role in bone metabolism. The link between vitamin D deficiency and rickets is well understood. However, subclinical vitamin D deficiency may also be detrimental to bone health in childhood. Its effects on bone mineralization have the potential to result in lower peak bone mass being attained, which could in turn contribute to increased fracture risk in both childhood and older adult life. As vitamin D deficiency is common globally, any detrimental effects of vitamin D deficiency on bone health are likely to have substantial public health implications. This review describes the current literature relevant to vitamin D and bone health in childhood and adolescence, with a particular emphasis on evaluating the emerging evidence for the impact of subclinical vitamin D deficiency on bone health and the effectiveness of vitamin D supplementation. The evidence suggests that subclinical vitamin D deficiency does affect bone acquisition, potentially beginning in utero and extending into adolescence. However, the effectiveness of vitamin D supplementation for improving bone health in situations of subclinical deficiency remains unclear, particularly in early life where there are few trials with bone density outcomes. The available evidence suggests that benefits are likely to be greatest in or even restricted to children with serum 25-hydroxyvitamin D levels at least below 50 nmol/L and possibly even lower than this. Trials of sufficient duration in deficient pregnant mothers, infants, and children are urgently required to address critical evidence gaps.


Vitamin D Bone Fracture Children Adolescents Nutrition 



G. J. receives a National Health and Medical Research Council Practitioner Fellowship, and T. W. receives a National Health and Medical Research Council/Primary Health Care Research Evaluation and Development Career Development Fellowship.


  1. 1.
    Institute of Medicine (2011) Dietary reference intakes for calcium and vitamin D. IOM, Washington, DCGoogle Scholar
  2. 2.
    Cranney A, Horsley T, O’Donnell S, Weiler H, Puil L, Ooi D et al (2007) Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess (Full Rep) 158:1–235Google Scholar
  3. 3.
    Carnes J, Quinn S, Nelson M, Jones G, Winzenberg T (2012) Intermittent high-dose vitamin D corrects vitamin D deficiency in adolescents: a pilot study. Eur J Clin Nutr 66:530–532PubMedCrossRefGoogle Scholar
  4. 4.
    Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA et al (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20:1807–1820PubMedCrossRefGoogle Scholar
  5. 5.
    Zamora SA, Rizzoli R, Belli DC, Slosman DO, Bonjour JP (1999) Vitamin D supplementation during infancy is associated with higher bone mineral mass in prepubertal girls. J Clin Endocrinol Metab 84:4541–4544PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng S, Tylavsky F, Kroger H, Karkkainen M, Lyytikainen A, Koistinen A et al (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78:485–492PubMedGoogle Scholar
  7. 7.
    Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-year prospective study. Am J Clin Nutr 76:1446–1453PubMedGoogle Scholar
  8. 8.
    Outila TA, Karkkainen MU, Lamberg-Allardt CJ (2001) Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr 74:206–210PubMedGoogle Scholar
  9. 9.
    Guillemant J, Le HT, Maria A, Allemandou A, Peres G, Guillemant S (2001) Wintertime vitamin D deficiency in male adolescents: effect on parathyroid function and response to vitamin D3 supplements. Osteoporos Int 12:875–879PubMedCrossRefGoogle Scholar
  10. 10.
    Tylavsky FA, Cheng S, Lyytikainen A, Viljakainen H, Lamberg-Allardt C (2006) Strategies to improve vitamin D status in northern European children: exploring the merits of vitamin D fortification and supplementation. J Nutr 136:1130–1134PubMedGoogle Scholar
  11. 11.
    Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR (2002) Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone 30:771–777PubMedCrossRefGoogle Scholar
  12. 12.
    El-Hajj Fuleihan G, Nabulsi M, Choucair M, Salamoun M, Hajj Shahine C, Kizirian A et al (2001) Hypovitaminosis D in healthy schoolchildren. Pediatrics 107:E53PubMedCrossRefGoogle Scholar
  13. 13.
    Munns C, Zacharin MR, Rodda CP, Batch JA, Morley R, Cranswick NE et al (2006) Prevention and treatment of infant and childhood vitamin D deficiency in Australia and New Zealand: a consensus statement. Med J Aust 185:268–272PubMedGoogle Scholar
  14. 14.
    Rockell JE, Skeaff CM, Williams SM, Green TJ (2006) Serum 25-hydroxyvitamin D concentrations of New Zealanders aged 15 years and older. Osteoporos Int 17:1382–1389PubMedCrossRefGoogle Scholar
  15. 15.
    Rockell JE, Green TJ, Skeaff CM, Whiting SJ, Taylor RW, Williams SM et al (2005) Season and ethnicity are determinants of serum 25-hydroxyvitamin D concentrations in New Zealand children aged 5–14 y. J Nutr 135:2602–2608PubMedGoogle Scholar
  16. 16.
    Jones G, Blizzard C, Riley MD, Parameswaran V, Greenaway TM, Dwyer T (1999) Vitamin D levels in prepubertal children in southern Tasmania: prevalence and determinants. Eur J Clin Nutr 53:824–829PubMedCrossRefGoogle Scholar
  17. 17.
    Jones G, Dwyer T, Hynes KL, Parameswaran V, Greenaway TM (2005) Vitamin D insufficiency in adolescent males in southern Tasmania: prevalence, determinants, and relationship to bone turnover markers. Osteoporos Int 16:636–641PubMedCrossRefGoogle Scholar
  18. 18.
    Kliegman R, Nelson WE (2011) Nelson textbook of pediatrics, 19th edn. Elsevier/Saunders, PhiladelphiaGoogle Scholar
  19. 19.
    Pettifor JM, Prentice A (2011) The role of vitamin D in paediatric bone health. Best Pract Res Clin Endocrinol Metab 25:573–584PubMedCrossRefGoogle Scholar
  20. 20.
    Rosen CJ (2008) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. American Society for Bone and Mineral Research, Washington, DCGoogle Scholar
  21. 21.
    Pettifor JM (2005) Rickets and vitamin D deficiency in children and adolescents. Endocrinol Metab Clin North Am 34:537–553 viiPubMedCrossRefGoogle Scholar
  22. 22.
    Pfitzner MA, Thacher TD, Pettifor JM, Zoakah AI, Lawson JO, Isichei CO et al (1998) Absence of vitamin D deficiency in young Nigerian children. J Pediatr 133:740–744PubMedCrossRefGoogle Scholar
  23. 23.
    Thacher TD, Fischer PR, Pettifor JM, Lawson JO, Isichei CO, Reading JC et al (1999) A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. N Engl J Med 341:563–568PubMedCrossRefGoogle Scholar
  24. 24.
    Specker BL, Ho ML, Oestreich A, Yin TA, Shui QM, Chen XC et al (1992) Prospective study of vitamin D supplementation and rickets in China. J Pediatr 120:733–739PubMedCrossRefGoogle Scholar
  25. 25.
    Wiesburg P, Scanlon KS, Li R, Cogswell ME (2004) Nutritional rickets among children in the United States: review of cases reported between 1986 and 2003. Am J Clin Nutr 80:1697S–1705SGoogle Scholar
  26. 26.
    Robinson PD, Hogler W, Craig ME, Verge CF, Walker JL, Piper AC et al (2006) The re-emerging burden of rickets: a decade of experience from Sydney. Arch Dis Child 91:564–568PubMedCrossRefGoogle Scholar
  27. 27.
    Jones G, Cooley HM (2002) Symptomatic fracture incidence in those under 50 years of age in southern Tasmania. J Paediatr Child Health 38:278–283PubMedCrossRefGoogle Scholar
  28. 28.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 312:1254–1259CrossRefGoogle Scholar
  29. 29.
    Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J et al (1993) Prediction of osteoporotic fractures by postural instability and bone density. Br Med J 307:1111–1115CrossRefGoogle Scholar
  30. 30.
    Ma D, Jones G (2003) The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case–control study. J Clin Endocrinol Metab 88:1486–1491PubMedCrossRefGoogle Scholar
  31. 31.
    Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13:143–148PubMedCrossRefGoogle Scholar
  32. 32.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr 139:509–515PubMedCrossRefGoogle Scholar
  33. 33.
    Clark EM, Ness AR, Bishop NJ, Tobias JH (2006) Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 21:1489–1495PubMedCrossRefGoogle Scholar
  34. 34.
    Hansen MA, Overgaard K, Riis BJ, Christiansen C (1991) Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. Br Med J 303:961–964CrossRefGoogle Scholar
  35. 35.
    Riis BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C (1996) Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture: a 15-year follow-up study. Bone 19:9–12PubMedCrossRefGoogle Scholar
  36. 36.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. J Am Med Assoc 285:785–795CrossRefGoogle Scholar
  37. 37.
    Saggese G, Baroncelli GI, Bertelloni S (2002) Puberty and bone development. Best Pract Res Clin Endocrinol Metab 16:53–64PubMedCrossRefGoogle Scholar
  38. 38.
    Tudor-Locke C, McColl RS (2000) Factors related to variation in premenopausal bone mineral status: a health promotion approach. Osteoporos Int 11:1–24PubMedCrossRefGoogle Scholar
  39. 39.
    Emaus N, Berntsen GK, Joakimsen RM, Fonnebo V (2005) Longitudinal changes in forearm bone mineral density in women and men aged 25–44 years: the Tromso study: a population-based study. Am J Epidemiol 162:633–643PubMedCrossRefGoogle Scholar
  40. 40.
    Recker RR, Davies KM, Hinders SM, Heaney RP, Stegman MR, Kimmel DB (1992) Bone gain in young adult women. JAMA 268:2403–2408PubMedCrossRefGoogle Scholar
  41. 41.
    Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res 14:1672–1679PubMedCrossRefGoogle Scholar
  42. 42.
    Henry YM, Fatayerji D, Eastell R (2004) Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int 15:263–273PubMedCrossRefGoogle Scholar
  43. 43.
    Pye SR, Tobias J, Silman AJ, Reeve J, O’Neill TW (2009) Childhood fractures do not predict future fractures: results from the European prospective osteoporosis study. J Bone Miner Res 24:1314–1318PubMedCrossRefGoogle Scholar
  44. 44.
    Hernandez CJ, Beaupre GS, Carter DR (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14:843–847PubMedCrossRefGoogle Scholar
  45. 45.
    Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K et al (1993) Bone density at various sites for prediction of hip fractures. The study of osteoporotic fractures research group. Lancet 341:72–75PubMedCrossRefGoogle Scholar
  46. 46.
    Ryan LM, Teach SJ, Searcy K, Singer SA, Wood R, Wright JL et al (2010) Epidemiology of pediatric forearm fractures in Washington, DC. J Trauma 69:S200–S205PubMedCrossRefGoogle Scholar
  47. 47.
    Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M (2006) Developmental origins of osteoporotic fracture. Osteoporos Int 17:337–347PubMedCrossRefGoogle Scholar
  48. 48.
    Holroyd C, Harvey N, Dennison E, Cooper C (2012) Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int 23:401–410PubMedCrossRefGoogle Scholar
  49. 49.
    Chan GM, McElligott K, McNaught T, Gill G (2006) Effects of dietary calcium intervention on adolescent mothers and newborns: a randomized controlled trial. Obstet Gynecol 108:565–571PubMedCrossRefGoogle Scholar
  50. 50.
    Cockburn F, Belton NR, Purvis RJ, Giles MM, Brown JK, Turner TL et al (1980) Maternal vitamin D intake and mineral metabolism in mothers and their newborn infants. Br Med J 281:11–14PubMedCrossRefGoogle Scholar
  51. 51.
    Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N et al (2010) Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 25:14–19PubMedCrossRefGoogle Scholar
  52. 52.
    Namgung R, Mimouni F, Campaigne BN, Ho ML, Tsang RC (1992) Low bone mineral content in summer-born compared with winter-born infants. J Pediatr Gastroenterol Nutr 15:285–288PubMedCrossRefGoogle Scholar
  53. 53.
    Namgung R, Tsang RC, Lee C, Han DG, Ho ML, Sierra RI (1998) Low total body bone mineral content and high bone resorption in Korean winter-born versus summer-born newborn infants. J Pediatr 132:421–425PubMedCrossRefGoogle Scholar
  54. 54.
    Namgung R, Tsang RC, Specker BL, Sierra RI, Ho ML (1994) Low bone mineral content and high serum osteocalcin and 1,25-dihydroxyvitamin D in summer- versus winter-born newborn infants: an early fetal effect? J Pediatr Gastroenterol Nutr 19:220–227PubMedCrossRefGoogle Scholar
  55. 55.
    Weiler H, Fitzpatrick-Wong S, Veitch R, Kovacs H, Schellenberg J, McCloy U et al (2005) Vitamin D deficiency and whole-body and femur bone mass relative to weight in healthy newborns. Can Med Assoc J 172:757–761CrossRefGoogle Scholar
  56. 56.
    Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Makitie O et al (2010) Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 95:1749–1757PubMedCrossRefGoogle Scholar
  57. 57.
    Viljakainen HT, Korhonen T, Hytinantti T, Laitinen EK, Andersson S, Makitie O et al (2011) Maternal vitamin D status affects bone growth in early childhood—a prospective cohort study. Osteoporos Int 22:883–891PubMedCrossRefGoogle Scholar
  58. 58.
    Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ et al (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367:36–43PubMedCrossRefGoogle Scholar
  59. 59.
    Brannon PM, Picciano MF (2011) Vitamin D in pregnancy and lactation in humans. Annu Rev Nutr 31:89–115PubMedCrossRefGoogle Scholar
  60. 60.
    Taylor SN, Wagner CL, Hollis BW (2008) Vitamin D supplementation during lactation to support infant and mother. J Am Coll Nutr 27:690–701PubMedGoogle Scholar
  61. 61.
    Specker B (2004) Nutrition influences bone development from infancy through toddler years. J Nutr 134:691S–695SPubMedGoogle Scholar
  62. 62.
    Specker BL, Beck A, Kalkwarf H, Ho M (1997) Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics 99:E12PubMedCrossRefGoogle Scholar
  63. 63.
    Ma DQ, Jones G (2002) Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health 38:497–500PubMedCrossRefGoogle Scholar
  64. 64.
    Manias K, McCabe D, Bishop N (2006) Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 39:652–657PubMedCrossRefGoogle Scholar
  65. 65.
    Jones IE, Williams SM, Goulding A (2004) Associations of birth weight and length, childhood size, and smoking with bone fractures during growth: evidence from a birth cohort study. Am J Epidemiol 159:343–350PubMedCrossRefGoogle Scholar
  66. 66.
    Jones G, Riley M, Dwyer T (2000) Breastfeeding in early life and bone mass in prepubertal children: a longitudinal study. Osteoporos Int 11:146–152PubMedCrossRefGoogle Scholar
  67. 67.
    Micklesfield L, Levitt N, Dhansay M, Norris S, van der Merwe L, Lambert E (2006) Maternal and early life influences on calcaneal ultrasound parameters and metacarpal morphometry in 7- to 9-year-old children. J Bone Miner Metab 24:235–242PubMedCrossRefGoogle Scholar
  68. 68.
    Pirila S, Taskinen M, Viljakainen H, Kajosaari M, Turanlahti M, Saarinen-Pihkala UM et al (2011) Infant milk feeding influences adult bone health: a prospective study from birth to 32 years. PLoS One 6:e19068PubMedCrossRefGoogle Scholar
  69. 69.
    Harvey NC, Robinson SM, Crozier SR, Marriott LD, Gale CR, Cole ZA et al (2009) Breast-feeding and adherence to infant feeding guidelines do not influence bone mass at age 4 years. Br J Nutr 102:915–920PubMedCrossRefGoogle Scholar
  70. 70.
    Kurl S, Heinonen K, Jurvelin JS, Lansimies E (2002) Lumbar bone mineral content and density measured using a Lunar DPX densitometer in healthy full-term infants during the first year of life. Clin Physiol Funct Imaging 22:222–225PubMedCrossRefGoogle Scholar
  71. 71.
    Young RJ, Antonson DL, Ferguson PW, Murray ND, Merkel K, Moore TE (2005) Neonatal and infant feeding: effect on bone density at 4 years. J Pediatr Gastroenterol Nutr 41:88–93PubMedCrossRefGoogle Scholar
  72. 72.
    Laskey MA, de Bono S, Smith EC, Prentice A (2007) Influence of birth weight and early diet on peripheral bone in premenopausal Cambridge women: a pQCT study. J Musculoskelet Neuronal Interact 7:83PubMedGoogle Scholar
  73. 73.
    Wagner CL, Greer FR (2008) Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 122:1142–1152PubMedCrossRefGoogle Scholar
  74. 74.
    Canada Health (2004) Vitamin D supplementation for breastfed infants—2004 Health Canada recommendation. Health Canada, OttawaGoogle Scholar
  75. 75.
    Scientific Advisory Committee on Nutrition (2007) Update on vitamin D. Stationery Office, LondonGoogle Scholar
  76. 76.
    Roberts CC, Chan GM, Folland D, Rayburn C, Jackson R (1981) Adequate bone mineralization in breast-fed infants. J Pediatr 99:192–196PubMedCrossRefGoogle Scholar
  77. 77.
    Park MJ, Namgung R, Kim DH, Tsang RC (1998) Bone mineral content is not reduced despite low vitamin D status in breast milk-fed infants versus cow’s milk based formula-fed infants. J Pediatr 132:641–645PubMedCrossRefGoogle Scholar
  78. 78.
    Bougle D, Sabatier JP, Bureau F, Laroche D, Brouard J, Guillois B et al (1998) Relationship between bone mineralization and aluminium in the healthy infant. Eur J Clin Nutr 52:431–435PubMedCrossRefGoogle Scholar
  79. 79.
    Greer FR, Searcy JE, Levin RS, Steichen JJ, Asch PS, Tsang RC (1981) Bone mineral content and serum 25-hydroxyvitamin D concentration in breast-fed infants with and without supplemental vitamin D. J Pediatr 98:696–701PubMedCrossRefGoogle Scholar
  80. 80.
    Greer FR, Searcy JE, Levin RS, Steichen JJ, Steichen-Asche PS, Tsang RC (1982) Bone mineral content and serum 25-hydroxyvitamin D concentrations in breast-fed infants with and without supplemental vitamin D: one-year follow-up. J Pediatr 100:919–922PubMedCrossRefGoogle Scholar
  81. 81.
    Chan GM, Roberts CC, Folland D, Jackson R (1982) Growth and bone mineralization of normal breast-fed infants and the effects of lactation on maternal bone mineral status. Am J Clin Nutr 36:438–443PubMedGoogle Scholar
  82. 82.
    Greer FR, Marshall S (1989) Bone mineral content, serum vitamin D metabolite concentrations, and ultraviolet B light exposure in infants fed human milk with and without vitamin D2 supplements. J Pediatr 114:204–212PubMedCrossRefGoogle Scholar
  83. 83.
    Cashman KD, Hill TR, Cotter AA, Boreham CA, Dubitzky W, Murray L et al (2008) Low vitamin D status adversely affects bone health parameters in adolescents. Am J Clin Nutr 87:1039–1044PubMedGoogle Scholar
  84. 84.
    Esterle L, Nguyen M, Walrant-Debray O, Sabatier JP, Garabedian M (2010) Adverse interaction of low-calcium diet and low 25(OH)D levels on lumbar spine mineralization in late-pubertal girls. J Bone Miner Res 25:2392–2398PubMedCrossRefGoogle Scholar
  85. 85.
    Jones G, Dwyer T (1998) Bone mass in prepubertal children: gender differences and the role of physical activity and sunlight exposure. J Clin Endocrinol Metab 83:4274–4279PubMedCrossRefGoogle Scholar
  86. 86.
    Jones G, Boon P (2008) Which bone mass measures discriminate adolescents who have fractured from those who have not? Osteoporos Int 19:251–255PubMedCrossRefGoogle Scholar
  87. 87.
    Winzenberg T, Hynes K, Powell S, Jones G (2007) Bone turnover is higher and bone density lower in adolescents with subclinical vitamin D deficiency. In: 17th Annual Scientific Meeting of Australian and New Zealand Bone and Mineral Society, Queenstown, New Zealand. ANZBMS, SydneyGoogle Scholar
  88. 88.
    Winzenberg T, Powell S, Shaw KA, Jones G (2011) Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. Br Med J 342:c7254CrossRefGoogle Scholar
  89. 89.
    Winzenberg TM, Powell S, Shaw KA, Jones G (2010) Vitamin D supplementation for improving bone mineral density in children. Cochrane Database Syst Rev 10:CD006944PubMedGoogle Scholar
  90. 90.
    Molgaard C, Larnkjaer A, Cashman KD, Lamberg-Allardt C, Jakobsen J, Michaelsen KF (2010) Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization? Bone 46:432–439PubMedCrossRefGoogle Scholar
  91. 91.
    Khadilkar AV, Sayyad MG, Sanwalka NJ, Bhandari DR, Naik S, Khadilkar VV et al (2010) Vitamin D supplementation and bone mass accrual in underprivileged adolescent Indian girls. Asia Pac J Clin Nutr 19:465–472PubMedGoogle Scholar
  92. 92.
    Ward KA, Das G, Roberts SA, Berry JL, Adams JE, Rawer R et al (2010) A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarchal females. J Clin Endocrinol Metab 95:4643–4651PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Menzies Research Institute TasmaniaHobartAustralia

Personalised recommendations