Calcified Tissue International

, Volume 90, Issue 6, pp 496–506 | Cite as

Poor Trabecular Microarchitecture at the Distal Radius in Older Men with Increased Concentration of High-Sensitivity C-Reactive Protein—The Strambo Study

  • T. Rolland
  • S. Boutroy
  • N. Vilayphiou
  • S. Blaizot
  • R. Chapurlat
  • P. Szulc
Original Research


Low-grade inflammation, assessed by serum high-sensitivity C-reactive protein (hsCRP) concentration, is associated with higher fracture risk irrespective of areal bone mineral density (aBMD). We assessed the association of hsCRP with bone microarchitecture (measured by high-resolution pQCT) at the distal radius and tibia in 1,149 men, aged 19–87 years. hsCRP concentration increased with age until the age of 72, then remained stable. aBMD was not correlated with hsCRP level. After adjustment for confounders, bone microarchitecture was not associated with hsCRP level in men aged <72. After the age of 72, hsCRP >5 mg/L was associated with lower trabecular density, lower trabecular number, higher trabecular spacing, and more heterogenous trabecular distribution (p < 0.05–0.005) at the distal radius versus hsCRP ≤ 5 mg/L. Similar differences were found for the fourth hsCRP quartile (>3.69 mg/L) versus the three lower quartiles combined. Cortical parameters of distal radius and microarchitectural parameters of distal tibia did not vary according to hsCRP concentration in men aged ≥72. Fracture prevalence increased with increasing hsCRP level. After adjustment for confounders (including aBMD), odds for fracture were higher in men with hsCRP >5 mg/L compared to hsCRP <1 mg/L (OR = 2.22, 95 % CI 1.29–3.82) and did not change after additional adjustment for microarchitectural parameters. The association between hsCRP level and bone microarchitecture was observed only for trabecular parameters at the radius in men aged ≥72. Impaired bone microarchitecture does not seem to explain the association between elevated CRP level and higher risk of fracture.


Men High-sensitivity C-reactive protein Cortical bone Trabecular bone Osteoporosis 


  1. 1.
    Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2:285–289PubMedCrossRefGoogle Scholar
  2. 2.
    Forsén L, Sogaard AJ, Meyer HE, Edna T, Kopjar B (1999) Survival after hip fracture: short- and long-term excess mortality according to age and gender. Osteoporos Int 10:73–78PubMedCrossRefGoogle Scholar
  3. 3.
    Diamond TH, Thornley SW, Sekel R, Smerdely P (1997) Hip fracture in elderly men: prognostic factors and outcomes. Med J Aust 167:412–415PubMedGoogle Scholar
  4. 4.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  5. 5.
    Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R (2011) Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res 26:1358–1367PubMedCrossRefGoogle Scholar
  6. 6.
    Sornay-Rendu E, Cabrera-Bravo J-L, Boutroy S, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24:737–743PubMedCrossRefGoogle Scholar
  7. 7.
    Sheu Y, Zmuda JM, Boudreau RM, Petit MA, Ensrud KE, Bauer DC et al (2011) Bone strength measured by peripheral quantitative computed tomography and the risk of nonvertebral fractures: the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res 26:63–71PubMedCrossRefGoogle Scholar
  8. 8.
    Gough AK, Lilley J, Eyre S, Holder RL, Emery P (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344:23–27PubMedCrossRefGoogle Scholar
  9. 9.
    Spector TD, Hall GM, McCloskey EV, Kanis JA (1993) Risk of vertebral fracture in women with rheumatoid arthritis. BMJ 306:558PubMedCrossRefGoogle Scholar
  10. 10.
    Du Clos TW (2000) Function of C-reactive protein. Ann Med 32:274–278PubMedCrossRefGoogle Scholar
  11. 11.
    Weinhold B, Rüther U (1997) Interleukin-6-dependent and -independent regulation of the human C-reactive protein gene. Biochem J 327:425–429PubMedGoogle Scholar
  12. 12.
    Yoshida N, Ikemoto S, Narita K, Sugimura K, Wada S, Yasumoto R et al (2002) Interleukin-6, tumour necrosis factor alpha and interleukin-1beta in patients with renal cell carcinoma. Br J Cancer 86:1396–1400PubMedCrossRefGoogle Scholar
  13. 13.
    Gowen M, Mundy GR (1986) Actions of recombinant interleukin 1, interleukin 2, and interferon-gamma on bone resorption in vitro. J Immunol 136:2478–2482PubMedGoogle Scholar
  14. 14.
    Ding C, Parameswaran V, Udayan R, Burgess J, Jones G (2008) Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: a longitudinal study. J Clin Endocrinol Metab 93:1952–1958PubMedCrossRefGoogle Scholar
  15. 15.
    Devlin J, Lilley J, Gough A, Huissoon A, Holder R, Reece R et al (1996) Clinical associations of dual-energy X-ray absorptiometry measurement of hand bone mass in rheumatoid arthritis. Br J Rheumatol 35:1256–1262PubMedCrossRefGoogle Scholar
  16. 16.
    Pye SR, Adams JE, Ward KA, Bunn DK, Symmons DPM, O’Neill TW (2010) Disease activity and severity in early inflammatory arthritis predict hand cortical bone loss. Rheumatology 49:1943–1948PubMedCrossRefGoogle Scholar
  17. 17.
    Cauley JA, Danielson ME, Boudreau RM, Forrest KY, Zmuda JM, Pahor M et al (2007) Inflammatory markers and incident fracture risk in older men and women: the Health Aging and Body Composition Study. J Bone Miner Res 22:1088–1095PubMedCrossRefGoogle Scholar
  18. 18.
    Schett G, Kiechl S, Weger S, Pederiva A, Mayr A, Petrangeli M et al (2006) High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med 166:2495–2501PubMedCrossRefGoogle Scholar
  19. 19.
    Nakamura K, Saito T, Kobayashi R, Oshiki R, Oyama M, Nishiwaki T et al (2011) C-reactive protein predicts incident fracture in community-dwelling elderly Japanese women: the Muramatsu study. Osteoporos Int 22:2145–2150PubMedCrossRefGoogle Scholar
  20. 20.
    Pasco JA, Kotowicz MA, Henry MJ, Nicholson GC, Spilsbury HJ, Box JD et al (2006) High-sensitivity C-reactive protein and fracture risk in elderly women. JAMA 296:1353–1355PubMedCrossRefGoogle Scholar
  21. 21.
    Koh J-M, Khang Y-H, Jung C-H, Bae S, Kim DJ, Chung Y-E et al (2005) Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int 16:1263–1271PubMedCrossRefGoogle Scholar
  22. 22.
    Ganesan K, Teklehaimanot S, Tran T-H, Asuncion M, Norris K (2005) Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females. J Natl Med Assoc 97:329–333PubMedGoogle Scholar
  23. 23.
    Kim B-J, Yu YM, Kim EN, Chung Y-E, Koh J-M, Kim GS (2007) Relationship between serum hsCRP concentration and biochemical bone turnover markers in healthy pre- and postmenopausal women. Clin Endocrinol (Oxf) 67:152–158CrossRefGoogle Scholar
  24. 24.
    Chaitou A, Boutroy S, Vilayphiou N, Munoz F, Delmas PD, Chapurlat R et al (2010) Association between bone turnover rate and bone microarchitecture in men: the STRAMBO study. J Bone Miner Res 25:2313–2323PubMedCrossRefGoogle Scholar
  25. 25.
    Szulc P, Uusi-Rasi K, Claustrat B, Marchand F, Beck TJ, Delmas PD (2004) Role of sex steroids in the regulation of bone morphology in men. The MINOS study. Osteoporos Int 15:909–917PubMedCrossRefGoogle Scholar
  26. 26.
    Szulc P, Hawa G, Boutroy S, Vilayphiou N, Schoppet M, Chapurlat R, Hofbauer LC (2011) Cortical bone status is associated with serum osteoprotegerin concentration in men: the STRAMBO study. J Clin Endocrinol Metab 96:2216–2226PubMedCrossRefGoogle Scholar
  27. 27.
    Chaitou A, Boutroy S, Vilayphiou N, Varennes A, Richard M, Blaizot S et al (2011) Association of bone microarchitecture with parathyroid hormone concentration and calcium intake in men: the STRAMBO study. Eur J Endocrinol 165:151–159PubMedCrossRefGoogle Scholar
  28. 28.
    Szulc P, Munoz F, Marchand F, Chapuy MC, Delmas PD (2003) Role of vitamin D and parathyroid hormone in the regulation of bone turnover and bone mass in men: the MINOS study. Calcif Tissue Int 73:520–530PubMedCrossRefGoogle Scholar
  29. 29.
    Szulc P, Claustrat B, Munoz F, Marchand F, Delmas PD (2004) Assessment of the role of 17beta-oestradiol in bone metabolism in men: does the assay technique matter? The MINOS study. Clin Endocrinol (Oxf) 61:447–457CrossRefGoogle Scholar
  30. 30.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRefGoogle Scholar
  31. 31.
    Blaizot S, Boutroy S, Vilayphiou N, Boonen S, Chapurlat R, Szulc P (2012) Poor bone microarchitecture in older men with impaired physical performance—the STRAMBO study. Osteoporos Int. doi: 10.1007/s00198-012-1906-0
  32. 32.
    Fardellone P, Sebert JL, Bouraya M, Bonidan O, Leclercq G, Doutrellot C, Bellony R, Dubreuil A (1991) Evaluation de la teneur en calcium du régime alimentaire par autoquestionnaire fréquentiel. Rev Rhum 58:99–103PubMedGoogle Scholar
  33. 33.
    Dati F, Schumann G, Thomas L, Aguzzi F, Baudner S, Bienvenu J et al (1996) Consensus. Eur J Clin Chem Clin Biochem 34:517–520PubMedGoogle Scholar
  34. 34.
    Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO III, Criqui M et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice. A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511PubMedCrossRefGoogle Scholar
  35. 35.
    Wener MH, Daum PR, McQuillan GM (2000) The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. J Rheumatol 27:2351–2359PubMedGoogle Scholar
  36. 36.
    Chenillot O, Henny J, Steinmetz J, Herbeth B, Wagner C, Siest G (2000) High sensitivity C-reactive protein: biological variations and reference limits. Clin Chem Lab Med 38:1003–1011PubMedCrossRefGoogle Scholar
  37. 37.
    Giovannini S, Onder G, Liperoti R, Russo A, Carter C, Capoluongo E, Pahor M, Bernabei R, Landi F (2011) Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J Am Geriatr Soc 59:1679–1685PubMedCrossRefGoogle Scholar
  38. 38.
    Tiainen K, Hurme M, Hervonen A, Luukkaala T, Jylhä M (2010) Inflammatory markers and physical performance among nonagenarians. J Gerontol A Biol Sci Med Sci 65:658–863PubMedCrossRefGoogle Scholar
  39. 39.
    Ballou SP, Lozanski FB, Hodder S, Rzewnicki DL, Mion LC, Sipe JD et al (1996) Quantitative and qualitative alterations of acute-phase proteins in healthy elderly persons. Age Ageing 25(3):224–230PubMedCrossRefGoogle Scholar
  40. 40.
    Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhøj P, Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol A Biol Sci Med Sci 54(7):M357–M364PubMedCrossRefGoogle Scholar
  41. 41.
    Brüünsgaard H, Pedersen BK (2003) Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 23(1):15–39PubMedCrossRefGoogle Scholar
  42. 42.
    Lencel P, Magne D (2011) Inflammaging: the driving force in osteoporosis? Med Hypotheses 76:317–321PubMedCrossRefGoogle Scholar
  43. 43.
    Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332:305–311PubMedCrossRefGoogle Scholar
  44. 44.
    Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270PubMedCrossRefGoogle Scholar
  45. 45.
    Nanes MS (2003) Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene 321:1–15PubMedCrossRefGoogle Scholar
  46. 46.
    Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham Study. J Bone Miner Res 8:567–573PubMedCrossRefGoogle Scholar
  47. 47.
    Armbrecht G, Belavý D, Backström M, Beller G, Alexandre C, Rizzoli R et al (2011) Trabecular and cortical bone density and architecture in women after 60-days of bed-rest using high-resolution pQCT: WISE 2005. J Bone Miner Res 26:2399–2410PubMedCrossRefGoogle Scholar
  48. 48.
    Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H (2000) Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med 17:124–129PubMedCrossRefGoogle Scholar
  49. 49.
    Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJ, Reid IR (2001) Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone 29:162–168PubMedCrossRefGoogle Scholar
  50. 50.
    Cornish J, Callon KE, Bava U, Watson M, Xu X, Lin JM et al (2007) Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab 292:E117–E122PubMedCrossRefGoogle Scholar
  51. 51.
    Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606PubMedCrossRefGoogle Scholar
  52. 52.
    Thomas T, Martin A (2005) Bone metabolism and energy balance: role for leptin. Joint Bone Spine 72:471–473PubMedCrossRefGoogle Scholar
  53. 53.
    Gennari L, Nuti R, Bilezikian JP (2004) Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 89:5898–5907PubMedCrossRefGoogle Scholar
  54. 54.
    Khosla S, Amin S, Orwoll E (2008) Osteoporosis in men. Endocr Rev 29:441–464PubMedCrossRefGoogle Scholar
  55. 55.
    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614PubMedCrossRefGoogle Scholar
  56. 56.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedGoogle Scholar
  57. 57.
    Szulc P, Varennes A, Delmas PD, Goudable J, Chapurlat R (2010) Men with metabolic syndrome have lower bone mineral density but lower fracture risk—the MINOS Study. J Bone Miner Res 25:1446–1454PubMedCrossRefGoogle Scholar
  58. 58.
    Szulc P, Boutroy S, Delmas PD (2008) Obesity and bone architecture in men—can we apportion the metabolic and the mechanical effect? J Bone Miner Res 23(Suppl 1):S216 abstract SA440Google Scholar
  59. 59.
    Rhodes B, Fürnrohr BG, Vyse TJ (2011) C-reactive protein in rheumatology: biology and genetics. Nat Rev Rheumatol 7:282–289PubMedCrossRefGoogle Scholar
  60. 60.
    Rhodes B, Merriman ME, Harrison A, Nissen MJ, Smith M, Stamp L et al (2010) A genetic association study of serum acute-phase C-reactive protein levels in rheumatoid arthritis: implications for clinical interpretation. PLoS Med 7:e1000341PubMedCrossRefGoogle Scholar
  61. 61.
    Wassel CL, Barrett-Connor E, Laughlin GA (2010) Association of circulating C-reactive protein and interleukin-6 with longevity into the 80 s and 90 s: the Rancho Bernardo Study. J Clin Endocrinol Metab 95:4748–4755PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • T. Rolland
    • 1
  • S. Boutroy
    • 1
  • N. Vilayphiou
    • 1
  • S. Blaizot
    • 1
  • R. Chapurlat
    • 1
  • P. Szulc
    • 1
  1. 1.INSERM UMR 1033, Université de Lyon and Hospices Civils de LyonLyonFrance

Personalised recommendations