Calcified Tissue International

, Volume 90, Issue 5, pp 404–410 | Cite as

(–)-Epigallocathechin-3-Gallate, an AMPK Activator, Decreases Ovariectomy-Induced Bone Loss by Suppression of Bone Resorption

  • Seung Hun Lee
  • Beom-Jun Kim
  • Hyung Jin Choi
  • Sun Wook Cho
  • Chan Soo Shin
  • Sook-Young Park
  • Young-Sun Lee
  • Sun-Young Lee
  • Hong-Hee Kim
  • Ghi Su Kim
  • Jung-Min KohEmail author
Original Research


Previously, we showed that AMP-activated protein kinase (AMPK) negatively regulates receptor activator of nuclear factor-κB ligand-induced osteoclast formation in vitro. The present study investigated the effect of (–)-epigallocathechin-3-gallate (EGCG), an AMPK activator, on ovariectomy (OVX)-induced bone loss in mice. Female mice subjected to OVX were administered EGCG for 8 weeks. We measured total-body bone mineral density (BMD) before and after the operation at an interval of 4 weeks. We performed micro-computed tomography (micro-CT) of the tibia and bone histomorphometric examination of the femur. Western blot analysis was additionally performed, to detect levels of the phosphorylated and total forms of AMPK-α in calvarial extracts. EGCG prevented OVX-induced body weight gain. The OVX control did not show a significant increase in BMD values at baseline and after treatment, unlike the sham control. EGCG attenuated OVX-induced bone loss. Micro-CT experiments revealed that EGCG induced a significant increase in trabecular bone volume and trabecular number and a decrease in trabecular spacing compared to the OVX control. Histomorphometric analyses further showed that EGCG suppressed osteoclast surface and number. Phosphorylated AMPK expression was significantly elevated in bone following EGCG treatment. Our findings collectively indicate that EGCG decreases OVX-induced bone loss via inhibition of osteoclasts.


AMP-activated protein kinase Bone resorption (–)-Epigallocathechin-3-gallate Osteoclast 



This study was supported by a grant from the Korea Health Technology R&D Project; the Ministry of Health & Welfare, Republic of Korea (Project A110536); and a grant (2011-523) from the Asan Institute for Life Sciences (Seoul, Korea).


  1. 1.
    Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801PubMedCrossRefGoogle Scholar
  2. 2.
    Brown D, Breton S (1996) Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol 199:2345–2358PubMedGoogle Scholar
  3. 3.
    Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou G, Sebhat IK, Zhang BB (2009) AMPK activators: potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf) 196:175–190CrossRefGoogle Scholar
  5. 5.
    Quinn JM, Tam S, Sims NA, Saleh H, McGregor NE, Poulton IJ, Scott JW, Gillespie MT, Kemp BE, van Denderen BJ (2010) Germline deletion of AMP-activated protein kinase beta subunits reduces bone mass without altering osteoclast differentiation or function. FASEB J 24:275–285PubMedCrossRefGoogle Scholar
  6. 6.
    Shah M, Kola B, Bataveljic A, Arnett TR, Viollet B, Saxon L, Korbonits M, Chenu C (2010) AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 47:309–319PubMedCrossRefGoogle Scholar
  7. 7.
    Hou CH, Tan TW, Tang CH (2008) AMP-activated protein kinase is involved in COX-2 expression in response to ultrasound in cultured osteoblasts. Cell Signal 20:978–988PubMedCrossRefGoogle Scholar
  8. 8.
    Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419PubMedCrossRefGoogle Scholar
  9. 9.
    Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009) Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296:E139–E146PubMedCrossRefGoogle Scholar
  10. 10.
    Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol 8:51PubMedCrossRefGoogle Scholar
  11. 11.
    Kasai T, Bandow K, Suzuki H, Chiba N, Kakimoto K, Ohnishi T, Kawamoto S, Nagaoka E, Matsuguchi T (2009) Osteoblast differentiation is functionally associated with decreased AMP kinase activity. J Cell Physiol 221:740–749PubMedCrossRefGoogle Scholar
  12. 12.
    Lee YS, Kim YS, Lee SY, Kim GH, Kim BJ, Lee SH, Lee KU, Kim GS, Kim SW, Koh JM (2010) AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 47:926–937PubMedCrossRefGoogle Scholar
  13. 13.
    Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M (1999) Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res 14:1217–1221PubMedCrossRefGoogle Scholar
  14. 14.
    Khastgir G, Studd J, Holland N, Alaghband-Zadeh J, Fox S, Chow J (2001) Anabolic effect of estrogen replacement on bone in postmenopausal women with osteoporosis: histomorphometric evidence in a longitudinal study. J Clin Endocrinol Metab 86:289–295PubMedCrossRefGoogle Scholar
  15. 15.
    Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMedGoogle Scholar
  17. 17.
    Yin J, Xing H, Ye J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57:712–717PubMedCrossRefGoogle Scholar
  18. 18.
    Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733PubMedCrossRefGoogle Scholar
  19. 19.
    Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026PubMedCrossRefGoogle Scholar
  20. 20.
    Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143–30149PubMedCrossRefGoogle Scholar
  21. 21.
    Mai Q, Zhang Z, Xu S, Lu M, Zhou R, Zhao L, Jia C, Wen Z, Jin D, Bai X (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909PubMedCrossRefGoogle Scholar
  22. 22.
    Qin L, Han T, Zhang Q, Cao D, Nian H, Rahman K, Zheng H (2008) Antiosteoporotic chemical constituents from Er-Xian decoction, a traditional Chinese herbal formula. J Ethnopharmacol 118:271–279PubMedCrossRefGoogle Scholar
  23. 23.
    Liu ZP, Li WX, Yu B, Huang J, Sun J, Huo JS, Liu CX (2005) Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model. J Med Food 8:14–19PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SH, Kim MJ, Kim BJ, Kim SR, Chun S, Ryu JS, Kim GS, Lee MC, Koh JM, Chung SJ (2010) Homocysteine-lowering therapy or antioxidant therapy for bone loss in Parkinson’s disease. Mov Disord 25:332–340PubMedCrossRefGoogle Scholar
  25. 25.
    Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603PubMedCrossRefGoogle Scholar
  26. 26.
    Cadarette SM, Burden AM (2010) Measuring and improving adherence to osteoporosis pharmacotherapy. Curr Opin Rheumatol 22:397–403PubMedCrossRefGoogle Scholar
  27. 27.
    Stearns ME, Amatangelo MD, Varma D, Sell C, Goodyear SM (2010) Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol 177:3169–3179PubMedCrossRefGoogle Scholar
  28. 28.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH (2010) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol 77:17–25PubMedCrossRefGoogle Scholar
  30. 30.
    Kim JE, Ahn MW, Baek SH, Lee IK, Kim YW, Kim JY, Dan JM, Park SY (2008) AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast. Bone 43:394–404PubMedCrossRefGoogle Scholar
  31. 31.
    Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19:73–88PubMedGoogle Scholar
  32. 32.
    Matsuo K, Irie N (2008) Osteoclast: osteoblast communication. Arch Biochem Biophys 473:201–209PubMedCrossRefGoogle Scholar
  33. 33.
    Kao YH, Hiipakka RA, Liao S (2000) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980–987PubMedCrossRefGoogle Scholar
  34. 34.
    Nelson-Dooley C, Della-Fera MA, Hamrick M, Baile CA (2005) Novel treatments for obesity and osteoporosis: targeting apoptotic pathways in adipocytes. Curr Med Chem 12:2215–2225PubMedCrossRefGoogle Scholar
  35. 35.
    Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187PubMedCrossRefGoogle Scholar
  36. 36.
    Hamrick MW, Ferrari SL (2008) Leptin and the sympathetic connection of fat to bone. Osteoporos Int 19:905–912PubMedCrossRefGoogle Scholar
  37. 37.
    Carr MC (2003) The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 88:2404–2411PubMedCrossRefGoogle Scholar
  38. 38.
    Hill AM, Coates AM, Buckley JD, Ross R, Thielecke F, Howe PR (2007) Can EGCG reduce abdominal fat in obese subjects? J Am Coll Nutr 26:396S–402SPubMedGoogle Scholar
  39. 39.
    Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS (2009) Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 44:684–690PubMedCrossRefGoogle Scholar
  40. 40.
    Shen CL, Yeh JK, Cao JJ, Tatum OL, Dagda RY, Wang JS (2011) Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model. J Nutr Biochem 21:968–974CrossRefGoogle Scholar
  41. 41.
    Kim S, Lee MJ, Hong J, Li C, Smith TJ, Yang GY, Seril DN, Yang CS (2000) Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer 37:41–48PubMedCrossRefGoogle Scholar
  42. 42.
    Peairs A, Dai R, Gan L, Shimp S, Rylander MN, Li L, Reilly CM (2010) Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cell Mol Immunol 7:123–132PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Seung Hun Lee
    • 1
  • Beom-Jun Kim
    • 1
  • Hyung Jin Choi
    • 2
  • Sun Wook Cho
    • 2
  • Chan Soo Shin
    • 2
  • Sook-Young Park
    • 3
  • Young-Sun Lee
    • 3
  • Sun-Young Lee
    • 3
  • Hong-Hee Kim
    • 4
  • Ghi Su Kim
    • 1
  • Jung-Min Koh
    • 1
    Email author
  1. 1.Division of Endocrinology and Metabolism, Asan Medical Center, College of MedicineUniversity of UlsanSeoulRepublic of Korea
  2. 2.Department of Internal Medicine, College of MedicineSeoul National UniversitySeoulRepublic of Korea
  3. 3.Asan Institute for Life SciencesSeoulRepublic of Korea
  4. 4.Department of Cell and Developmental Biology, College of DentistrySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations