Calcified Tissue International

, Volume 88, Issue 4, pp 314–324 | Cite as

Effects of Alfacalcidol on Mechanical Properties and Collagen Cross-Links of the Femoral Diaphysis in Glucocorticoid-Treated Rats

  • Mitsuru Saito
  • Keishi Marumo
  • Chikara Ushiku
  • Soki Kato
  • Sadaoki Sakai
  • Naohiko Hayakawa
  • Masahiko Mihara
  • Ayako Shiraishi
Original Research


Bone fragility is increased in glucocorticoid (GC)-induced osteopenia even though GC-treated patients have higher bone mineral density (BMD), suggesting that the impaired bone quality may affect bone strength. This study was conducted to clarify the effects of GC on bone strength and collagen cross-links of adult rats and the effect of coadministration of alfacalcidol (ALF), a prodrug of active vitamin D3. Six-month-old male Wistar-Imamichi rats (n = 32) were divided into the following four groups with equal average body weight: (1) 4-week age-matched controls, (2) 4-week GC (prednisolone, 10 mg/kg daily, i.m.) with concomitant administration of vehicle, (3) 4-week GC with concomitant administration of ALF (0.05 μg/kg daily, p.o.), and (4) 4-week GC with concomitant administration of ALF (0.1 μg/kg daily, p.o.). At the end of treatment, BMD, collagen cross-links, mechanical properties of the femoral midshaft, bone metabolic markers, and biochemical parameters were analyzed. In the GC group, femoral bone strength decreased without any change of BMD. This was accompanied by a decrease in the content of enzymatic cross-links. ALF (0.1 μg/kg) inhibited the GC-induced reduction in bone strength. The content of mature cross-links in the 0.1-μg/kg ALF group was significantly higher than that in the GC group. GC treatment caused a decrease in bone metabolic markers and serum calcium levels, which was counteracted by ALF coadministration. Preventive treatment with ALF inhibited the deterioration of bone mechanical properties primarily in association with the restoration of enzymatic cross-link formation and amelioration of the adverse effects of GC treatment on calcium metabolism.


Alfacalcidol Collagen cross-links Glucocorticoid Osteoporosis Bone quality Bone strength 



The authors are grateful to Ms. Mika Imamura and Ms. Kazumi Hirakawa (research assistants, Jikei University School of Medicine) for aiding specimen preparation and testing.


  1. 1.
    van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis:a meta-analysis. Osteoporos Int 13:777–787PubMedCrossRefGoogle Scholar
  2. 2.
    Ton FN, Gunawardene SC, Lee H, Neer RM (2005) Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 20:464–470PubMedCrossRefGoogle Scholar
  3. 3.
    Patschan D, Loddenkemper K, Buttgereit F (2001) Molecular mechanisms of glucocorticoid-induced osteoporosis. Bone 29:498–505PubMedCrossRefGoogle Scholar
  4. 4.
    Canalis E (2005) Mechanisms of glucocorticoid action in bone. Curr Osteoporos Rep 3:98–102PubMedCrossRefGoogle Scholar
  5. 5.
    Canalis E, Delany AM (2002) Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 966:73–81PubMedCrossRefGoogle Scholar
  6. 6.
    de Nijs RN, Jacobs JW, Lems WF, Laan RF, Algra A, Huisman AM, Buskens E, de Laet CE, Oostveen AC, Geusens PP, Bruyn GA, Dijkmans BA, Bijlsma JW, STOP Investigators (2006) Alendornate or alfacacidol in glucocorticoid-induced osteoporosis. N Engl J Med 355:675–684PubMedCrossRefGoogle Scholar
  7. 7.
    de Nijs RN, Jacobs JW, Algra A, Lems WF, Bijlsma JW (2004) Prevention and treatment of glucocorticoid-induced osteoporosis with active vitamin D3 analoges: a review with meta-analysis of randomized controlled trials including organ transplantation studies. Osteoporos Int 15:589–602PubMedCrossRefGoogle Scholar
  8. 8.
    Clowes JA, Peel N, Eastell R (2001) Glucocorticoid-induced osteoporosis. Curr Osteoporos Rep 13:326–332Google Scholar
  9. 9.
    NIH Consensus Development Panel (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  10. 10.
    Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004PubMedCrossRefGoogle Scholar
  11. 11.
    Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336PubMedCrossRefGoogle Scholar
  12. 12.
    Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–287PubMedCrossRefGoogle Scholar
  13. 13.
    Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214PubMedCrossRefGoogle Scholar
  14. 14.
    Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523PubMedCrossRefGoogle Scholar
  15. 15.
    Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A (2010) Raloxifene ameliorates detrimental enzymatic and non-enzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21:655–666PubMedCrossRefGoogle Scholar
  16. 16.
    Saito M, Fujii K, Soshi S, Tanaka T (2006) Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17:986–995PubMedCrossRefGoogle Scholar
  17. 17.
    Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79:160–168PubMedCrossRefGoogle Scholar
  18. 18.
    Kuboki Y, Kudo A, Mizuno M, Kawamura M (1992) Time-dependent changes of collagen cross-links and their precursors in the culture of osteogenic cells. Calcif Tissue Int 50:473–480PubMedCrossRefGoogle Scholar
  19. 19.
    Uzawa K, Grzesik WJ, Nishiura T, Kuznetsov SA, Robey PG, Brenner DA, Yamauchi M (1999) Differential expression of human lysyl hydroxylase genes, lysyl hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res 14:1272–1280PubMedCrossRefGoogle Scholar
  20. 20.
    Yamauchi M, Katz EP (1993) The post-translational chemistry and molecular packing of mineralizing tendon collagens. Connect Tissue Res 29:81–98PubMedCrossRefGoogle Scholar
  21. 21.
    Saito M, Soshi S, Fujii K (2003) Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J Bone Miner Res 18:1695–1705PubMedCrossRefGoogle Scholar
  22. 22.
    Saito M, Sohsi S, Tanaka T, Fujii K (2004) Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low and high intensity pulsed ultrasound. Bone 35:644–655PubMedCrossRefGoogle Scholar
  23. 23.
    Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17(4 Suppl):365S–371SPubMedGoogle Scholar
  24. 24.
    Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible crosslinks in human trabecular bone with respect to age and osteoporosis. Bone 19:448–479Google Scholar
  25. 25.
    Banse X, Sims TJ, Bailey AJ (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 17:1621–1628PubMedCrossRefGoogle Scholar
  26. 26.
    Brommage R, DeLuca HF (1985) Evidence that 1,25-dihydroxyvitamin D3 in the physiologically active metabolite of vitamin D3. Endocr Rev 6:491–511PubMedCrossRefGoogle Scholar
  27. 27.
    Hara K, Akiyama Y, Ohkawa I, Tajima T (1993) Effects of menatetrenone on prednisolone-induced bone loss in rats. Bone 14:813–818PubMedCrossRefGoogle Scholar
  28. 28.
    Tanaka Y, Nakamura T, Nishida S, Suzuki K, Sato K, Takeda S, Nishii Y (1996) Effects of synthetic vitamin D analog, ED-71, on bone dynamics and strength in cancellous and cortical bone in prednisolone-treated rats. J Bone Miner Res 11:325–336PubMedCrossRefGoogle Scholar
  29. 29.
    Shiraishi A, Takeda S, Masaki T, Higuchi Y, Uchiyama Y, Kubodera N, Sato K, Ikeda K, Nakamura T, Matsumoto T, Ogata E (2000) Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis: distinct actions from estrogen. J Bone Miner Res 15:770–779PubMedCrossRefGoogle Scholar
  30. 30.
    Shiraishi A, Ito M, Hayakawa N, Kubota N, Kubodera N, Ogata E (2006) Calcium supplementation does not reproduce the pharmacological efficacy of alfacalcidol for the treatment of osteoporosis in rats. Calcif Tissue Int 78:152–161PubMedCrossRefGoogle Scholar
  31. 31.
    Katsumata T, Nakamura T, Ohnishi H, Sakurawa T (1995) Intermittent cyclical etidronate treatment maintains the mass, structure and the mechanical property of bone in ovariectomized rats. J Bone Miner Res 10:921–931PubMedCrossRefGoogle Scholar
  32. 32.
    Saito M, Marumo K, Fujii K, Ishioka N (1997) Single column high-performance liquid chromatographic-fluorescence detection of immature, mature and senescent cross-links of collagen. Anal Biochem 253:26–32PubMedCrossRefGoogle Scholar
  33. 33.
    van Staa TP, Laan RF, Barton IP, Cohen S, Reid DM, Cooper C (2003) Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 48:3224–3229PubMedCrossRefGoogle Scholar
  34. 34.
    Hayashi K, Yamamoto M, Murakawa Y, Yamauchi M, Kaji H, Yamaguchi T, Sugimoto T (2009) Bone fragility in male glucocorticoid-induced osteoporosis is not defined by bone mineral density. Osteoporos Int 20:1889–1894PubMedCrossRefGoogle Scholar
  35. 35.
    Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, Kinney JH, Bonewald LF (2006) Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res 21:466–476PubMedCrossRefGoogle Scholar
  36. 36.
    Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible crosslinks in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484PubMedCrossRefGoogle Scholar
  37. 37.
    Atsawasuwan P, Mochida Y, Parisuthiman D, Parisuthiman D, Yamauchi M (2005) Expression of lysyl oxidase isoforms in MC3T3-E1 osteoblastic cells. Biochem Biophys Res Commun 327:1042–1046PubMedCrossRefGoogle Scholar
  38. 38.
    Benson SC, LuValle PA (1998) Inhibition of lysyl oxidase and prolyl hydroxylase activity in glucocorticoid treated rats. Biochem Biophys Res Commun 99:557–562CrossRefGoogle Scholar
  39. 39.
    Feres-Filho EJ, Choi YJ, Han X, Takala TE, Trackman PC (1995) Pre- and post-translational regulation of lysyl oxidase by transforming growth factor-beta 1 in osteoblastic MC3T3-E1 cells. J Biol Chem 270:30797–30803PubMedCrossRefGoogle Scholar
  40. 40.
    Centrella M, McCarthy TL, Canalis E (1991) Glucocorticoid regulation of transforming growth factor beta 1 activity and binding in osteoblast-enriched cultures from fetal rat bone. Mol Cell Biol 11:4490–4496PubMedGoogle Scholar
  41. 41.
    Delany AM, Durant D, Canalis E (2001) Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 15:1781–1789PubMedCrossRefGoogle Scholar
  42. 42.
    Reiser K, Summers P, Medrano JF, Rucker R, Last J, McDonald R (1996) Effects of elevated circulating IGF-1 on the extracellular matrix in high-growth C57BL/6 J mice. Am J Physiol Regul Integr Comp Physiol 271:R696–R703Google Scholar
  43. 43.
    Iwamoto J, Seki A, Takeda T, Sato Y, Yamada H, Shen CL, Yeh JK (2006) Comparative effects of risedronate and calcitriol on cancellous bone in rats with glucocorticoid-induced osteopenia. J Nutr Sci Vitaminol 52:21–27PubMedCrossRefGoogle Scholar
  44. 44.
    Nagaoka H, Mochida Y, Atsawasuwan P, Kaku M, Kondoh T, Yamauchi M (2008) 1,25(OH)2D3 regulates collagen quality in an osteoblastic cell culture system. Biochem Biophys Res Commun 377:674–678PubMedCrossRefGoogle Scholar
  45. 45.
    Pornprasertsuk S, Wagner R, Duarte WR, Mochida Y, Yamauchi M (2005) Overexpression of lysyl hydroxylase-2b leads to defective collagen fibrillogenesis and matrix mineralization. J Bone Miner Res 20:81–87PubMedCrossRefGoogle Scholar
  46. 46.
    Jowell PS, Epstein S, Fallon MD, Reinhardt TA, Iamail F (1987) 1,25-Dihydroxyvitamin D3 modulates glucocorticoid-induced alteration in serum bone Gla protein and bone histomorphometry. Endocrinology 120:531–536PubMedCrossRefGoogle Scholar
  47. 47.
    Reid IR, Katz JM, Ibbertson HK, Gray DH (1986) The effects of hydrocortisone, parathyroid hormone and the bisphosphonate, APD, on bone resorption in neonatal mouse calvaria. Calcif Tissue Int 38:38–43PubMedCrossRefGoogle Scholar
  48. 48.
    Hodgson SF (1990) Corticosteroid-induced osteoporosis. Endocrinol Metab Clin North Am 19:95–111PubMedGoogle Scholar
  49. 49.
    Lindgren JU, Merchant CR, DeLuca HF (1982) Effect of 1,25-dihydroxyvitamin D3 on osteopenia induced by prednisolone in adult rats. Calcif Tissue Int 34:253–257PubMedCrossRefGoogle Scholar
  50. 50.
    Shiraishi A, Higashi S, Ohkawa H, Kubodera N, Hirasawa T, Ezawa I, Ikeda K, Ogata E (2006) The advantage of alfacalcidol over vitamin D in the treatment of osteoporosis. Calcif Tissue Int 65:311–316CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mitsuru Saito
    • 1
  • Keishi Marumo
    • 1
  • Chikara Ushiku
    • 1
  • Soki Kato
    • 1
  • Sadaoki Sakai
    • 2
  • Naohiko Hayakawa
    • 2
  • Masahiko Mihara
    • 2
  • Ayako Shiraishi
    • 2
  1. 1.Department of Orthopedic SurgeryJikei University School of MedicineTokyoJapan
  2. 2.Product Research DepartmentChugai Pharmaceutical Co., LtdShizuokaJapan

Personalised recommendations