Advertisement

Calcified Tissue International

, Volume 87, Issue 3, pp 226–235 | Cite as

Association of Oxidative Stress with Postmenopausal Osteoporosis and the Effects of Hydrogen Peroxide on Osteoclast Formation in Human Bone Marrow Cell Cultures

  • Ki Hyun Baek
  • Ki Won Oh
  • Won Young Lee
  • Seong Su Lee
  • Mee Kyoung Kim
  • Hyuk Sang Kwon
  • Eun Jung Rhee
  • Je Ho Han
  • Ki Ho Song
  • Bong Yun Cha
  • Kwang Woo Lee
  • Moo Il KangEmail author
Article

Abstract

It has been suggested that oxidative stress is associated with the pathogenesis of osteoporosis. The objective of this study was to explore the association between a marker of oxidative stress and either bone turnover markers or bone mineral density (BMD) in postmenopausal women. In addition, the effects of oxidative stress on the formation of osteoclasts in human bone marrow cell culture were examined. We performed a cross-sectional analysis in healthy postmenopausal women aged 60–78 years (n = 135, 68.2 ± 4.9). Oxidative stress was evaluated in the serum by measuring 8-hydroxy-2′-deoxyguanosine (8-OH-dG) levels. The biochemical markers of bone turnover and areal BMD were measured in all participants. Multivariate linear regression analysis revealed a negative association between 8-OH-dG levels and BMD of the lumbar spine, total hip, femoral neck, and trochanter and positive association with type I collagen C-telopeptide (ICTP) levels. The odds ratio of 8-OH-dG for osteoporosis was 1.54 (1.14–2.31, P = 0.003). In cultures of primary human marrow cells, H2O2 caused concentration-dependent activation of TRAP-positive multinucleated giant cells. H2O2 also increased the area of pits per osteoclast activity assay substrate. RT-PCR showed that H2O2 stimulated the expression of M-CSF and RANKL and increased the RANKL/OPG ratio. The data support the view that oxidative stress is associated with increased bone resorption and low bone mass in otherwise healthy women. In addition, RANKL and M-CSF stimulation induced by oxidative stress may participate in osteoclastogenesis in human bone.

Keywords

Oxidative stress Osteoporosis 8-Hydroxy-2′-deoxyguanosine Bone turnover marker Bone mineral density Osteoclast 

References

  1. 1.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefPubMedGoogle Scholar
  2. 2.
    Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519CrossRefPubMedGoogle Scholar
  3. 3.
    Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem Biophys Res Commun 314:197–207CrossRefPubMedGoogle Scholar
  4. 4.
    Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W (2004) Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197:93–100CrossRefPubMedGoogle Scholar
  5. 5.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639CrossRefPubMedGoogle Scholar
  6. 6.
    Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288:275–279CrossRefPubMedGoogle Scholar
  7. 7.
    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527CrossRefPubMedGoogle Scholar
  8. 8.
    Yalin S, Bagis S, Polat G, Dogruer N, Cenk Aksit S, Hatungil R, Erdogan C (2005) Is there a role of free oxygen radicals in primary male osteoporosis? Clin Exp Rheumatol 23:689–692PubMedGoogle Scholar
  9. 9.
    Yousefzadeh G, Larijani B, Mohammadirad A, Heshmat R, Dehghan G, Rahimi R, Abdollahi M (2006) Determination of oxidative stress status and concentration of TGF-beta 1 in the blood and saliva of osteoporotic subjects. Ann N Y Acad Sci 1091:142–150CrossRefPubMedGoogle Scholar
  10. 10.
    Mangiafico RA, Malaponte G, Pennisi P, Li Volti G, Trovato G, Mangiafico M, Bevelacqua Y, Mazza F, Fiore CE (2007) Increased formation of 8-iso-prostaglandin F is associated with altered bone metabolism and lower bone mass in hypercholesterolaemic subjects. J Intern Med 261:587–596CrossRefPubMedGoogle Scholar
  11. 11.
    Ostman B, Michaëlsson K, Helmersson J, Byberg L, Gedeborg R, Melhus H, Basu S (2009) Oxidative stress and bone mineral density in elderly men: antioxidant activity of alpha-tocopherol. Free Radic Biol Med 47:668–673CrossRefPubMedGoogle Scholar
  12. 12.
    Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124CrossRefPubMedGoogle Scholar
  13. 13.
    Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE (1993) 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health 40:391–404CrossRefPubMedGoogle Scholar
  14. 14.
    Fischer-Nielsen A, Jeding IB, Loft S (1994) Radiation-induced formation of 8-hydroxy-2′-deoxyguanosine and its prevention by scavengers. Carcinogenesis 15:1609–1612CrossRefPubMedGoogle Scholar
  15. 15.
    Loft S, Vistisen K, Ewertz M, Tjonneland A, Overvad K, Poulsen HE (1992) Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis 13:2241–2247CrossRefPubMedGoogle Scholar
  16. 16.
    Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T (1996) Oxidative damage to DNA in diabetes mellitus. Lancet 347:444–445CrossRefPubMedGoogle Scholar
  17. 17.
    Djordjevic VB (2004) Free radicals in cell biology. Int Rev Cytol 237:57–89CrossRefPubMedGoogle Scholar
  18. 18.
    Suda N, Morita I, Kuroda T, Murota S (1993) Participation of oxidative stress in the process of osteoclast differentiation. Biochim Biophys Acta 1157:318–323PubMedGoogle Scholar
  19. 19.
    Fraser JH, Helfrich MH, Wallace HM, Ralston SH (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19:223–226CrossRefPubMedGoogle Scholar
  20. 20.
    Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH (2006) Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 40:1483–1493CrossRefPubMedGoogle Scholar
  21. 21.
    MacDonald BR, Takahashi N, McManus LM, Holahan J, Mundy GR, Roodman GD (1987) Formation of multinucleated cells that respond to osteotropic hormones in long term human bone marrow cultures. Endocrinology 120:2326–2333CrossRefPubMedGoogle Scholar
  22. 22.
    Moller P, Wallin H, Knudsen LE (1996) Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact 102:17–36CrossRefPubMedGoogle Scholar
  23. 23.
    Sontakke AN, Tare RS (2002) A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin Chim Acta 318:145–148CrossRefPubMedGoogle Scholar
  24. 24.
    Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506CrossRefPubMedGoogle Scholar
  25. 25.
    Takeuchi T, Nakajima M, Morimoto K (1996) Relationship between the intracellular reactive oxygen species and the induction of oxidative DNA damage in human neutrophil-like cells. Carcinogenesis 17:1543–1548CrossRefPubMedGoogle Scholar
  26. 26.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56CrossRefPubMedGoogle Scholar
  27. 27.
    Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ki Hyun Baek
    • 1
  • Ki Won Oh
    • 2
  • Won Young Lee
    • 2
  • Seong Su Lee
    • 1
  • Mee Kyoung Kim
    • 1
  • Hyuk Sang Kwon
    • 1
  • Eun Jung Rhee
    • 2
  • Je Ho Han
    • 1
  • Ki Ho Song
    • 1
  • Bong Yun Cha
    • 1
  • Kwang Woo Lee
    • 1
  • Moo Il Kang
    • 1
    • 3
    Email author
  1. 1.Department of Internal Medicine, College of MedicineThe Catholic University of KoreaSeoulKorea
  2. 2.Department of Internal MedicineSungkyunkwan University School of MedicineSeoulKorea
  3. 3.Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s HospitalThe Catholic University of KoreaSeocho-Gu SeoulKorea

Personalised recommendations