Calcified Tissue International

, Volume 87, Issue 1, pp 44–51

Risk Factors for Cervical and Trochanteric Hip Fractures in Elderly Women: A Population-Based 10-Year Follow-Up Study

  • Heikki Jokinen
  • Pasi Pulkkinen
  • Juha Korpelainen
  • Jorma Heikkinen
  • Sirkka Keinänen-Kiukaanniemi
  • Timo Jämsä
  • Raija Korpelainen


We evaluated the contribution of lifestyle-related factors, calcaneal ultrasound, and radial bone mineral density (BMD) to cervical and trochanteric hip fractures in elderly women in a 10-year population-based cohort study. The study population consisted of 1,681 women (age range 70–73 years). Seventy-two percent (n = 1,222) of them participated in the baseline measurements. Calcaneal ultrasound was assessed with a quantitative ultrasound device. BMD measurements were performed at the distal and ultradistal radius by dual-energy X-ray absorptiometry. Forward stepwise logistic regression analysis was used to find the most predictive variables for hip fracture risk. During the follow-up, 53 of the women had hip fractures, including 32 cervical and 21 trochanteric ones. The fractured women were taller and thinner and had lower calcaneal ultrasound values than those without fractures. High body mass index (BMI) was a protective factor against any hip fractures, while low functional mobility was a risk factor of hip fractures. Specifically, high BMI protected against cervical hip fractures, while low physical activity was a significant predictor of these fractures. Similarly, high BMI protected against trochanteric fractures, whereas low functional mobility and high coffee consumption were significant predictors of trochanteric fractures. Cervical and trochanteric hip fractures seem to have different risk factors. Therefore, fracture type should be taken into account in clinical fracture risk assessment and preventative efforts, including patient counseling. However, the study is not conclusive due to the limited number of observed fractures during follow-up, and the results have to be confirmed in future studies.


Fracture type Hip fracture Mobility Peripheral DXA Physical activity Quantitative ultrasound 


  1. 1.
    Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7:407–413CrossRefPubMedGoogle Scholar
  2. 2.
    Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Jarvinen M (2006) Nationwide decline in incidence of hip fracture. J Bone Miner Res 21:1836–1838CrossRefPubMedGoogle Scholar
  3. 3.
    Lonnroos E, Kautiainen H, Karppi P, Huusko T, Hartikainen S, Kiviranta I, Sulkava R (2006) Increased incidence of hip fractures. A population based-study in Finland. Bone 39:623–627CrossRefPubMedGoogle Scholar
  4. 4.
    Nurmi I, Narinen A, Luthje P, Tanninen S (2003) Cost analysis of hip fracture treatment among the elderly for the public health services: a 1-year prospective study in 106 consecutive patients. Arch Orthop Trauma Surg 123:551–554CrossRefPubMedGoogle Scholar
  5. 5.
    Youm T, Koval KJ, Kummer FJ, Zuckerman JD (1999) Do all hip fractures result from a fall? Am J Orthop 28:190–194PubMedGoogle Scholar
  6. 6.
    Kanis JA, Johnell O, Oden A, De Laet C, Jonsson B, Dawson A (2002) Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone 30:251–258CrossRefPubMedGoogle Scholar
  7. 7.
    Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L, Dequeker J, Dilsen G, Gennari C, Lopes Vaz A, Lyritis G (1995) Risk factors for hip fracture in European women: the MEDOS Study. Mediterranean Osteoporosis Study. J Bone Miner Res 10:1802–1815CrossRefPubMedGoogle Scholar
  8. 8.
    Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, Cauley J, Black D, Vogt TM (1995) Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 332:767–773CrossRefPubMedGoogle Scholar
  9. 9.
    Wagner H, Melhus H, Gedeborg R, Pedersen NL, Michaelsson K (2009) Simply ask them about their balance—future fracture risk in a nationwide cohort study of twins. Am J Epidemiol 169:143–149CrossRefPubMedGoogle Scholar
  10. 10.
    Gregg EW, Cauley JA, Seeley DG, Ensrud KE, Bauer DC (1998) Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 129:81–88PubMedGoogle Scholar
  11. 11.
    Mautalen CA, Vega EM, Einhorn TA (1996) Are the etiologies of cervical and trochanteric hip fractures different? Bone 18:133S–137SCrossRefPubMedGoogle Scholar
  12. 12.
    Pulkkinen P, Partanen J, Jalovaara P, Jamsa T (2004) Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int 15:274–280CrossRefPubMedGoogle Scholar
  13. 13.
    Pulkkinen P, Eckstein F, Lochmuller EM, Kuhn V, Jamsa T (2006) Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Miner Res 21:895–901CrossRefPubMedGoogle Scholar
  14. 14.
    Vega E, Mautalen C, Gomez H, Garrido A, Melo L, Sahores AO (1991) Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur. Osteoporos Int 1:81–86CrossRefPubMedGoogle Scholar
  15. 15.
    Duboeuf F, Hans D, Schott AM, Kotzki PO, Favier F, Marcelli C, Meunier PJ, Delmas PD (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 12:1895–1902CrossRefPubMedGoogle Scholar
  16. 16.
    Schott AM, Hans D, Duboeuf F, Dargent-Molina P, Hajri T, Breart G, Meunier PJ, EPIDOS Study Group (2005) Quantitative ultrasound parameters as well as bone mineral density are better predictors of trochanteric than cervical hip fractures in elderly women. Results from the EPIDOS Study. Bone 37:858–863CrossRefPubMedGoogle Scholar
  17. 17.
    Schott AM, Weill-Engerer S, Hans D, Duboeuf F, Delmas PD, Meunier PJ (1995) Ultrasound discriminates patients with hip fracture equally well as dual energy X-ray absorptiometry and independently of bone mineral density. J Bone Miner Res 10:243–249CrossRefPubMedGoogle Scholar
  18. 18.
    Stewart A, Porter RW, Primrose WR, Walker LG, Reid DM (1999) Cervical and trochanteric hip fractures: bone mass and other parameters. Clin Rheumatol 18:201–206CrossRefPubMedGoogle Scholar
  19. 19.
    Korpelainen R, Korpelainen J, Heikkinen J, Vaananen K, Keinanen-Kiukaanniemi S (2003) Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a population-based cohort study of 1222 women. Osteoporos Int 14:34–43CrossRefPubMedGoogle Scholar
  20. 20.
    Greendale GA, Barrett-Connor E, Edelstein S, Ingles S, Haile R (1995) Lifetime leisure exercise and osteoporosis. The Rancho Bernardo Study. Am J Epidemiol 141:951–959PubMedGoogle Scholar
  21. 21.
    Tuppurainen M, Kroger H, Saarikoski S, Honkanen R, Alhava E (1994) The effect of previous oral contraceptive use on bone mineral density in perimenopausal women. Osteoporos Int 4:93–98CrossRefPubMedGoogle Scholar
  22. 22.
    Podsiadlo D, Richardson S (1991) The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148PubMedGoogle Scholar
  23. 23.
    Fox KM, Cummings SR, Williams E, Stone K, Study of Osteoporotic Fractures (2000) Femoral neck and intertrochanteric fractures have different risk factors: a prospective study. Osteoporos Int 11:1018–1023CrossRefPubMedGoogle Scholar
  24. 24.
    Nakamura N, Kyou T, Takaoka K, Ohzono K, Ono K (1992) Bone mineral density in the proximal femur and hip fracture type in the elderly. J Bone Miner Res 7:755–759CrossRefPubMedGoogle Scholar
  25. 25.
    Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13:69–73CrossRefPubMedGoogle Scholar
  26. 26.
    Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514CrossRefPubMedGoogle Scholar
  27. 27.
    Khaw KT, Reeve J, Luben R, Bingham S, Welch A, Wareham N, Oakes S, Day N (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202CrossRefPubMedGoogle Scholar
  28. 28.
    Krieg MA, Cornuz J, Ruffieux C, Van Melle G, Buche D, Dambacher MA, Hans D, Hartl F, Hauselmann HJ, Kraenzlin M, Lippuner K, Neff M, Pancaldi P, Rizzoli R, Tanzi F, Theiler R, Tyndall A, Wimpfheimer C, Burckhardt P (2006) Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or =70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF Study. J Bone Miner Res 21:1457–1463CrossRefPubMedGoogle Scholar
  29. 29.
    Partanen J, Jamsa T, Jalovaara P (2001) Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J Bone Miner Res 16:1540–1546CrossRefPubMedGoogle Scholar
  30. 30.
    Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS prospective study. Osteoporos Int 8:247–254CrossRefPubMedGoogle Scholar
  31. 31.
    Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135CrossRefPubMedGoogle Scholar
  32. 32.
    Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22:1781–1790CrossRefPubMedGoogle Scholar
  33. 33.
    Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott AM, Hausherr E, Meunier PJ, Breart G (1996) Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet 348:145–149CrossRefPubMedGoogle Scholar
  34. 34.
    Nevitt MC, Cummings SR, Kidd S, Black D (1989) Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA 261:2663–2668CrossRefPubMedGoogle Scholar
  35. 35.
    Tinetti ME, Speechley M, Ginter SF (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–1707PubMedGoogle Scholar
  36. 36.
    Haentjens P, Autier P, Barette M, Venken K, Vanderschueren D, Boonen S, Hip Fracture Study Group (2007) Survival and functional outcome according to hip fracture type: a one-year prospective cohort study in elderly women with an intertrochanteric or femoral neck fracture. Bone 41:958–964CrossRefPubMedGoogle Scholar
  37. 37.
    Bischoff HA, Stahelin HB, Monsch AU, Iversen MD, Weyh A, von Dechend M, Akos R, Conzelmann M, Dick W, Theiler R (2003) Identifying a cut-off point for normal mobility: a comparison of the timed “up and go” test in community-dwelling and institutionalised elderly women. Age Ageing 32:315–320CrossRefPubMedGoogle Scholar
  38. 38.
    Lin MR, Hwang HF, Hu MH, Wu HD, Wang YW, Huang FC (2004) Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and Tinetti balance measures in community-dwelling older people. J Am Geriatr Soc 52:1343–1348CrossRefPubMedGoogle Scholar
  39. 39.
    Shumway-Cook A, Brauer S, Woollacott M (2000) Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys Ther 80:896–903PubMedGoogle Scholar
  40. 40.
    Hernandez-Avila M, Colditz GA, Stampfer MJ, Rosner B, Speizer FE, Willett WC (1991) Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am J Clin Nutr 54:157–163PubMedGoogle Scholar
  41. 41.
    Kiel DP, Felson DT, Hannan MT, Anderson JJ, Wilson PW (1990) Caffeine and the risk of hip fracture: the Framingham Study. Am J Epidemiol 132:675–684PubMedGoogle Scholar
  42. 42.
    Heaney RP (2002) Effects of caffeine on bone and the calcium economy. Food Chem Toxicol 40:1263–1270CrossRefPubMedGoogle Scholar
  43. 43.
    Barrett-Connor E, Chang JC, Edelstein SL (1994) Coffee-associated osteoporosis offset by daily milk consumption. The Rancho Bernardo Study. JAMA 271:280–283CrossRefPubMedGoogle Scholar
  44. 44.
    Bauer DC, Browner WS, Cauley JA, Orwoll ES, Scott JC, Black DM, Tao JL, Cummings SR (1993) Factors associated with appendicular bone mass in older women. The Study of Osteoporotic Fractures Research Group. Ann Intern Med 118:657–665PubMedGoogle Scholar
  45. 45.
    Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL (2001) Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74:694–700PubMedGoogle Scholar
  46. 46.
    Barger-Lux MJ, Heaney RP (1995) Caffeine and the calcium economy revisited. Osteoporos Int 5:97–102CrossRefPubMedGoogle Scholar
  47. 47.
    Hasling C, Sondergaard K, Charles P, Mosekilde L (1992) Calcium metabolism in postmenopausal osteoporotic women is determined by dietary calcium and coffee intake. J Nutr 122:1119–1126PubMedGoogle Scholar
  48. 48.
    Hallstrom H, Wolk A, Glynn A, Michaelsson K (2006) Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int 17:1055–1064CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Heikki Jokinen
    • 1
    • 2
    • 7
  • Pasi Pulkkinen
    • 1
  • Juha Korpelainen
    • 3
  • Jorma Heikkinen
    • 4
  • Sirkka Keinänen-Kiukaanniemi
    • 5
  • Timo Jämsä
    • 1
    • 6
  • Raija Korpelainen
    • 1
    • 2
    • 5
  1. 1.Department of Medical Technology, Institute of BiomedicineUniversity of OuluOuluFinland
  2. 2.Department of Sports and Exercise MedicineOulu Deaconess InstituteOuluFinland
  3. 3.Department of NeurologyUniversity of OuluOuluFinland
  4. 4.Osteoporosis ClinicOulu Deaconess InstituteOuluFinland
  5. 5.Institute of Health Sciences, Unit of General PracticeUniversity of OuluOuluFinland
  6. 6.Department of Diagnostic RadiologyOulu University HospitalOuluFinland
  7. 7.OuluFinland

Personalised recommendations