Calcified Tissue International

, Volume 86, Issue 3, pp 261–270

Ciliary Neurotrophic Factor Inhibits Bone Formation and Plays a Sex-Specific Role in Bone Growth and Remodeling

  • Narelle E. McGregor
  • Ingrid J. Poulton
  • Emma C. Walker
  • Sueli Pompolo
  • Julian M. W. Quinn
  • T. John Martin
  • Natalie A. Sims
Article

Abstract

Ciliary neurotrophic factor (CNTF) receptor (CNTFR) expression has been described in osteoblast-like cells, suggesting a role for CNTF in bone metabolism. When bound to CNTF, neuropoietin (NP), or cardiotrophin-like-cytokine (CLC), CNTFR forms a signaling complex with gp130 and the leukemia inhibitory factor receptor, which both play critical roles in bone cell biology. This study aimed to determine the role of CNTFR-signaling cytokines in bone. Immunohistochemistry detected CNTF in osteoblasts, osteocytes, osteoclasts, and proliferating chondrocytes. CNTFR mRNA was detected in primary calvarial osteoblasts and was upregulated during osteoblast differentiation. Treatment of osteoblasts with CNTF or CLC, but not NP, significantly inhibited mineralization and osterix mRNA levels. Twelve-week-old male CNTF−/− mice demonstrated reduced femoral length, cortical thickness, and periosteal circumference; but femoral trabecular bone mineral density (Tb.BMD) and tibial trabecular bone volume (BV/TV) were not significantly different from wild-type, indicating a unique role for CNTF in bone growth in male mice. In contrast, female CNTF−/− femora were of normal width, but femoral Tb.BMD, tibial BV/TV, trabecular number, and trabecular thickness were all increased. Female CNTF−/− tibiae also demonstrated high osteoblast number and mineral apposition rate compared to wild-type littermates, and this was intrinsic to the osteoblast lineage. CNTF is expressed locally in bone and plays a unique role in female mice as an inhibitor of trabecular bone formation and in male mice as a stimulus of cortical growth.

Keywords

gp130 Osteoblast CNTF LIFR CNTFR 

References

  1. 1.
    Sims NA (2009) gp130 signaling in bone cell biology: multiple roles revealed by analysis of genetically altered mice. Mol Cell Endocrinol 310:30–39PubMedCrossRefGoogle Scholar
  2. 2.
    Ware CB, Horowitz MC, Renshaw BR, Hunt JS, Liggitt D, Koblar SA, Gliniak BC, McKenna HJ, Papayannopoulou T, Thoma B et al (1995) Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121:1283–1299PubMedGoogle Scholar
  3. 3.
    Kawasaki K, Gao YH, Yokose S, Kaji Y, Nakamura T, Suda T, Yoshida K, Taga T, Kishimoto T, Kataoka H, Yuasa T, Norimatsu H, Yamaguchi A (1997) Osteoclasts are present in gp130-deficient mice. Endocrinology 138:4959–4965PubMedCrossRefGoogle Scholar
  4. 4.
    Shin HI, Divieti P, Sims NA, Kobayashi T, Miao D, Karaplis AC, Baron R, Bringhurst R, Kronenberg HM (2004) Gp130-mediated signaling is necessary for normal osteoblastic function in vivo and in vitro. Endocrinology 145:1376–1385PubMedCrossRefGoogle Scholar
  5. 5.
    Cornish J, Callon K, King A, Edgar S, Reid IR (1993) The effect of leukemia inhibitory factor on bone in vivo. Endocrinology 132:1359–1366PubMedCrossRefGoogle Scholar
  6. 6.
    Walker EC, McGregor NE, Poulton IJ, Pompolo S, Allan EH, Quinn JM, Gillespie MT, Martin TJ, Sims NA (2008) Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 23:2025–2032PubMedCrossRefGoogle Scholar
  7. 7.
    Walker EC, Mcgregor NE, Pompolo S, Poulton IJ, Quinn JMW, Zhang JG, Nicola NA, Solano M, Gillespie MT, Martin TJ, Sims NA (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest. doi:10.1172/JCI40568
  8. 8.
    Romas E, Udagawa N, Zhou H, Tamura T, Saito M, Taga T, Hilton DJ, Suda T, Ng KW, Martin TJ (1996) The role of gp130-mediated signals in osteoclast development: regulation of interleukin 11 production by osteoblasts and distribution of its receptor in bone marrow cultures. J Exp Med 183:2581–2591PubMedCrossRefGoogle Scholar
  9. 9.
    Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, Koishihara Y, Ohsugi Y, Kumaki K, Taga T et al (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci USA 90:11924–11928PubMedCrossRefGoogle Scholar
  10. 10.
    Udagawa N, Takahashi N, Katagiri T, Tamura T, Wada S, Findlay DM, Martin TJ, Hirota H, Taga T, Kishimoto T et al (1995) Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J Exp Med 182:1461–1468PubMedCrossRefGoogle Scholar
  11. 11.
    Davis S, Aldrich TH, Valenzuela DM, Wong VV, Furth ME, Squinto SP, Yancopoulos GD (1991) The receptor for ciliary neurotrophic factor. Science 253:59–63PubMedCrossRefGoogle Scholar
  12. 12.
    Derouet D, Rousseau F, Alfonsi F, Froger J, Hermann J, Barbier F, Perret D, Diveu C, Guillet C, Preisser L, Dumont A, Barbado M, Morel A, deLapeyriere O, Gascan H, Chevalier S (2004) Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc Natl Acad Sci USA 101:4827–4832PubMedCrossRefGoogle Scholar
  13. 13.
    Elson GC, Lelievre E, Guillet C, Chevalier S, Plun-Favreau H, Froger J, Suard I, de Coignac AB, Delneste Y, Bonnefoy JY, Gauchat JF, Gascan H (2000) CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci 3:867–872PubMedCrossRefGoogle Scholar
  14. 14.
    Stahl N, Yancopoulos GD (1994) The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J Neurobiol 25:1454–1466PubMedCrossRefGoogle Scholar
  15. 15.
    Bellido T, Stahl N, Farruggella TJ, Borba V, Yancopoulos GD, Manolagas SC (1996) Detection of receptors for interleukin-6, interleukin-11, leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor in bone marrow stromal/osteoblastic cells. J Clin Invest 97:431–437PubMedCrossRefGoogle Scholar
  16. 16.
    Liu F, Aubin JE, Malaval L (2002) Expression of leukemia inhibitory factor (LIF)/interleukin-6 family cytokines and receptors during in vitro osteogenesis: differential regulation by dexamethasone and LIF. Bone 31:212–219PubMedCrossRefGoogle Scholar
  17. 17.
    Bellido T, Borba VZ, Roberson P, Manolagas SC (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138:3666–3676PubMedCrossRefGoogle Scholar
  18. 18.
    Forger NG, Prevette D, deLapeyriere O, de Bovis B, Wang S, Bartlett P, Oppenheim RW (2003) Cardiotrophin-like cytokine/cytokine-like factor 1 is an essential trophic factor for lumbar and facial motoneurons in vivo. J Neurosci 23:8854–8858PubMedGoogle Scholar
  19. 19.
    Zhang P, Turner CH, Yokota H (2009) Joint loading-driven bone formation and signaling pathways predicted from genome-wide expression profiles. Bone 44:989–998PubMedCrossRefGoogle Scholar
  20. 20.
    Alexander WS, Rakar S, Robb L, Farley A, Willson TA, Zhang JG, Hartley L, Kikuchi Y, Kojima T, Nomura H, Hasegawa M, Maeda M, Fabri L, Jachno K, Nash A, Metcalf D, Nicola NA, Hilton DJ (1999) Suckling defect in mice lacking the soluble haemopoietin receptor NR6. Curr Biol 9:605–608PubMedCrossRefGoogle Scholar
  21. 21.
    Masu Y, Wolf E, Holtmann B, Sendtner M, Brem G, Thoenen H (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365:27–32PubMedCrossRefGoogle Scholar
  22. 22.
    Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R, Goffin V, Coschigano K, Gaillard-Kelly M, Kopchick J, Baron R, Kelly PA (2000) Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 106:1095–1103PubMedCrossRefGoogle Scholar
  23. 23.
    Sims NA, Brennan K, Spaliviero J, Handelsman DJ, Seibel MJ (2006) Perinatal testosterone surge is required for normal adult bone size but not for normal bone remodeling. Am J Physiol Endocrinol Metab 290:E456–E462PubMedCrossRefGoogle Scholar
  24. 24.
    Horn D, Rivas P, McCluskey B, Mundy GR, Gutierrez G (2002) A new staining technique for undecalcified bone sections that enhances visualization of fluorochromes. J Bone Miner Res 17:S416Google Scholar
  25. 25.
    Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R (2002) Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30:18–25PubMedCrossRefGoogle Scholar
  26. 26.
    Sims NA, White CP, Sunn KL, Thomas GP, Drummond ML, Morrison NA, Eisman JA, Gardiner EM (1997) Human and murine osteocalcin gene expression: conserved tissue restricted expression and divergent responses to 1, 25-dihydroxyvitamin D3 in vivo. Mol Endocrinol 11:1695–1708PubMedCrossRefGoogle Scholar
  27. 27.
    Quinn JM, Sims NA, Saleh H, Mirosa D, Thompson K, Bouralexis S, Walker EC, Martin TJ, Gillespie MT (2008) IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J Immunol 181:5720–5729PubMedGoogle Scholar
  28. 28.
    Quinn JM, Whitty GA, Byrne RJ, Gillespie MT, Hamilton JA (2002) The generation of highly enriched osteoclast-lineage cell populations. Bone 30:164–170PubMedCrossRefGoogle Scholar
  29. 29.
    Onan D, Allan EH, Quinn JM, Gooi JH, Pompolo S, Sims NA, Gillespie MT, Martin TJ (2009) The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts. Endocrinology 150:2244–2253PubMedCrossRefGoogle Scholar
  30. 30.
    Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, Manolagas SC (1992) 17Beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest 89:883–891PubMedCrossRefGoogle Scholar
  31. 31.
    Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, Kronenberg HM, Baron R, Schipani E (2001) Activated parathyroid hormone/parathyroid hormone–related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 107:277–286PubMedCrossRefGoogle Scholar
  32. 32.
    Sims NA, Jenkins BJ, Quinn JM, Nakamura A, Glatt M, Gillespie MT, Ernst M, Martin TJ (2004) Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest 113:379–389PubMedGoogle Scholar
  33. 33.
    Forger NG, Wagner CK, Contois M, Bengston L, MacLennan AJ (1998) Ciliary neurotrophic factor receptor alpha in spinal motoneurons is regulated by gonadal hormones. J Neurosci 18:8720–8729PubMedGoogle Scholar
  34. 34.
    Park JJ, Howell M, Winseck A, Forger NG (1999) Effects of testosterone on the development of a sexually dimorphic neuromuscular system in ciliary neurotrophic factor receptor knockout mice. J Neurobiol 41:317–325PubMedCrossRefGoogle Scholar
  35. 35.
    van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199:805–814PubMedCrossRefGoogle Scholar
  36. 36.
    Lelievre E, Plun-Favreau H, Chevalier S, Froger J, Guillet C, Elson GC, Gauchat JF, Gascan H (2001) Signaling pathways recruited by the cardiotrophin-like cytokine/cytokine-like factor-1 composite cytokine: specific requirement of the membrane-bound form of ciliary neurotrophic factor receptor alpha component. J Biol Chem 276:22476–22484PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Narelle E. McGregor
    • 1
  • Ingrid J. Poulton
    • 1
  • Emma C. Walker
    • 1
  • Sueli Pompolo
    • 1
  • Julian M. W. Quinn
    • 1
    • 2
    • 3
  • T. John Martin
    • 1
    • 2
  • Natalie A. Sims
    • 1
    • 2
  1. 1.St. Vincent’s InstituteFitzroyAustralia
  2. 2.Department of MedicineSt. Vincent’s Hospital, The University of MelbourneFitzroyAustralia
  3. 3.Monash Medical CentrePrince Henry’s InstituteClaytonAustralia

Personalised recommendations