Skip to main content
Log in

Hyperhomocysteinemia Due to Levodopa Treatment as a Risk Factor for Osteoporosis in Patients with Parkinson’s Disease

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) patients have been reported to have lower bone mineral density (BMD) and higher fracture risk than individuals without PD. We assessed the association between hyperhomocysteinemia due to levodopa intake and BMD in PD patients. We measured serum homocysteine (Hcy) concentrations and BMD in the proximal femur and lumbar spine of PD patients aged 55 years or older (n = 95) and three age-/gender-matched control subjects (n = 285). The prevalence of osteoporosis was higher in both men (2.5-fold) and women (1.7-fold) with PD than in controls, and adjusted odds ratios for osteoporosis were 3.57 (95% confidence interval [CI], 1.25–10.20) for men and 2.54 for women (95% CI, 1.31–4.93) with PD. Serum Hcy concentrations were significantly higher in PD patients (median = 13.0 μmol/l) than controls (median = 11.5 μmol/l) (P = 0.005). Serum Hcy concentrations were independently associated with BMD values at all proximal femur sites in all subjects (P = 0.005 to 0.012). In PD patients, higher serum Hcy concentrations were independently associated with higher fracture risk (P = 0.029). PD patients taking higher doses of levodopa had significantly higher serum Hcy concentrations (P = 0.013), and greater levodopa intake was associated with lower BMD values in some areas (P = 0.008 to 0.029). In conclusion, these findings indicate that hyperhomocysteinemia due to levodopa intake may be one additional risk factor for osteoporosis and fracture in PD patients. Reducing Hcy may be a therapeutic modality for treating osteoporosis in PD patients taking levodopa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnell O, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Kurland LT (1992) Fracture risk in patients with parkinsonism: a population-based study in Olmsted County, Minnesota. Age Ageing 21:32–38

    Article  CAS  PubMed  Google Scholar 

  2. Aita JF (1982) Why patients with Parkinson’s disease fall. JAMA 247:515–516

    Article  CAS  PubMed  Google Scholar 

  3. Koller WC, Glatt S, Vetere-Overfield B, Hassanein R (1989) Falls and Parkinson’s disease. Clin Neuropharmacol 12:98–105

    CAS  PubMed  Google Scholar 

  4. Sato Y, Kaji M, Tsuru T, Oizumi K (2001) Risk factors for hip fracture among elderly patients with Parkinson’s disease. J Neurol Sci 182:89–93

    Article  CAS  PubMed  Google Scholar 

  5. Vaserman N (2005) Parkinson’s disease and osteoporosis. Joint Bone Spine 72:484–488

    Article  PubMed  Google Scholar 

  6. Kao CH, Chen CC, Wang SJ, Chia LG, Yeh SH (1994) Bone mineral density in patients with Parkinson’s disease measured by dual photon absorptiometry. Nucl Med Commun 15:173–177

    Article  CAS  PubMed  Google Scholar 

  7. Taggart H, Crawford V (1995) Reduced bone density of the hip in elderly patients with Parkinson’s disease. Age Ageing 24:326–328

    Article  CAS  PubMed  Google Scholar 

  8. Sato Y, Kikuyama M, Oizumi K (1997) High prevalence of vitamin D deficiency and reduced bone mass in Parkinson’s disease. Neurology 49:1273–1278

    CAS  PubMed  Google Scholar 

  9. Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, Tell GS (2006) Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch Intern Med 166:88–94

    Article  CAS  PubMed  Google Scholar 

  10. Golbahar J, Hamidi A, Aminzadeh MA, Omrani GR (2004) Association of plasma folate, plasma total homocysteine, but not methylenetetrahydrofolate reductase C667T polymorphism, with bone mineral density in postmenopausal Iranian women: a cross-sectional study. Bone 35:760–765

    Article  CAS  PubMed  Google Scholar 

  11. Morris MS, Jacques PF, Selhub J (2005) Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans. Bone 37:234–242

    Article  CAS  PubMed  Google Scholar 

  12. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350:2042–2049

    Article  CAS  PubMed  Google Scholar 

  13. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler MM, Lips P, Pols HA, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041

    Article  PubMed  Google Scholar 

  14. Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Homocysteine as a predictive factor for hip fracture in elderly women with Parkinson’s disease. Am J Med 118:1250–1255

    Article  CAS  PubMed  Google Scholar 

  15. Benson R, Crowell B, Hill B, Doonquah K, Charlton C (1993) The effects of L-dopa on the activity of methionine adenosyltransferase: relevance to L-dopa therapy and tolerance. Neurochem Res 18:325–330

    Article  CAS  PubMed  Google Scholar 

  16. O’Suilleabhain PE, Bottiglieri T, Dewey RB Jr, Sharma S, Diaz-Arrastia R (2004) Modest increase in plasma homocysteine follows levodopa initiation in Parkinson’s disease. Mov Disord 19:1403–1408

    Article  PubMed  Google Scholar 

  17. Rogers JD, Sanchez-Saffon A, Frol AB, Diaz-Arrastia R (2003) Elevated plasma homocysteine levels in patients treated with levodopa: association with vascular disease. Arch Neurol 60:59–64

    Article  PubMed  Google Scholar 

  18. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  Google Scholar 

  19. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    CAS  PubMed  Google Scholar 

  20. Fahn S, Elton R (1987) Unified Parkinson’s Disease Rating Scale. In: Fahn S, Marsden C, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. Macmillan Health Care Information, New York, pp 153–163

    Google Scholar 

  21. Binkley N, Bilezikian JP, Kendler DL, Leib ES, Lewiecki EM, Petak SM (2006) Official positions of the International Society for Clinical Densitometry and Executive Summary of the 2005 Position Development Conference. J Clin Densitom 9:4–14

    Article  PubMed  Google Scholar 

  22. Kiel D (1995) Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures. J Bone Miner Res 10:518–523

    CAS  PubMed  Google Scholar 

  23. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  24. Lee DK, Choi HK, Son JC, Chung WJ, Kim BT, Kim K (2005) Serum homocysteine and its relevant factors among health screeners in a university hospital. J Korean Acad Fam Med 26:671–679

    CAS  Google Scholar 

  25. Mudd SH, Skovby F, Levy HL et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37:1–31

    CAS  PubMed  Google Scholar 

  26. Sato Y, Honda Y, Iwamoto J, Kanoko T, Satoh K (2005) Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA 293:1082–1088

    Article  CAS  PubMed  Google Scholar 

  27. Sawka AM, Ray JG, Yi Q, Josse RG, Lonn E (2007) Randomized clinical trial of homocysteine level lowering therapy and fractures. Arch Intern Med 167:2136–2139

    Article  CAS  PubMed  Google Scholar 

  28. Browner WS, Malinow MR (1991) Homocyst(e)inaemia and bone density in elderly women. Lancet 338:1470

    Article  CAS  PubMed  Google Scholar 

  29. Lubec B, Fang-Kircher S, Lubec T, Blom HJ, Boers GH (1996) Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 1315:159–162

    PubMed  Google Scholar 

  30. Herrmann M, Widmann T, Colaianni G, Colucci S, Zallone A, Herrmann W (2005) Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin Chem 51:2348–2353

    Article  CAS  PubMed  Google Scholar 

  31. Koh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, Lee KU, Kim GS (2006) Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res 21:1003–1011

    Article  CAS  PubMed  Google Scholar 

  32. Kim DJ, Koh JM, Lee O, Kim NJ, Lee YS, Kim YS, Park JY, Lee KU, Kim GS (2006) Homocysteine enhances apoptosis in human bone marrow stromal cells. Bone 39:582–590

    Article  CAS  PubMed  Google Scholar 

  33. Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A (2006) Bone mineral density in hip-fracture patients with Parkinson’s disease: a case-control study. Arch Phys Med Rehabil 87:1459–1462

    Article  PubMed  Google Scholar 

  34. Blandini F, Fancellu R, Martignoni E, Mangiagalli A, Pacchetti C, Samuele A, Nappi G (2001) Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 47:1102–1104

    CAS  PubMed  Google Scholar 

  35. Miller JW, Selhub J, Nadeau MR, Thomas CA, Feldman RG, Wolf PA (2003) Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology 60:1125–1129

    CAS  PubMed  Google Scholar 

  36. Leboff MS, Narweker R, LaCroix A, Wu L, Jackson R, Lee J, Bauer DC, Cauley J, Kooperberg C, Lewis C, Thomas AM, Cummings S (2009) Homocysteine levels and risk of hip fracture in postmenopausal women. J Clin Endocrinol Metab 94:1207–1213

    Article  CAS  PubMed  Google Scholar 

  37. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    CAS  PubMed  Google Scholar 

  38. Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology 72:S1–S136

    Article  PubMed  Google Scholar 

  39. Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332:305–311

    Article  CAS  PubMed  Google Scholar 

  40. Burger H, van Daele PL, Odding E, Valkenburg HA, Hofman A, Grobbee DE, Schutte HE, Birkenhager JC, Pols HA (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arth Rheum 39:81–86

    Article  CAS  Google Scholar 

  41. Vestergaard P, Rejnmark L, Mosekilde L (2007) Fracture risk associated with parkinsonism and anti-Parkinson drugs. Calcif Tissue Int 81:153–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korean Ministry of Education, Science & Technology (No. FPR08B1-170) of the 21C Frontier Functional Proteomics Program and by a grant from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (Project No. A080256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Ju Chung or Jung-Min Koh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Kim, M.J., Kim, BJ. et al. Hyperhomocysteinemia Due to Levodopa Treatment as a Risk Factor for Osteoporosis in Patients with Parkinson’s Disease. Calcif Tissue Int 86, 132–141 (2010). https://doi.org/10.1007/s00223-009-9327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9327-6

Keywords

Navigation