Calcified Tissue International

, Volume 86, Issue 3, pp 192–201

Region-Specific Sex-Dependent Pattern of Age-Related Changes of Proximal Femoral Cancellous Bone and Its Implications on Differential Bone Fragility

  • Marija Djuric
  • Danijela Djonic
  • Petar Milovanovic
  • Slobodan Nikolic
  • Robert Marshall
  • Jelena Marinkovic
  • Michael Hahn


Despite evident interest in age-related bone changes, data on regional differences within the proximal femur are scarce. To date, there has been no comprehensive study on site-specific age-related changes in the trabecular architecture of three biomechanically important femoral subregions (medial neck, lateral neck, and intertrochanteric region) for both genders. In this study we investigated age-related deterioration in the trabecular architecture of those three subregions of the femoral neck for both genders. The research sample included 52 proximal femora (26 males, 26 females; age range, 26–96 years) from Forensic Department at University of Belgrade. Bone sections from the three regions of interest were scanned by micro-CT at University of Hamburg. The study revealed that proximal femoral microarchitecture cannot be perceived as homogeneous and, more importantly, that the aging process is not uniform. Besides the initial intersite differences, microarchitecture changed differently with increasing age, maintaining significant differences between the regions. In addition, we observed a different aging pattern between genders: deterioration was most significant in the intertrochanteric region in women, while the lateral neck was most affected in men. This finding supports epidemiological data about the differential occurrence of cervical vs. trochanteric fractures in aging males and females. In conclusion, the aging process in the proximal femur cannot be regarded as a simple function of quantitative bone loss but, rather, as an alteration of specific architecture that may degrade bone strength.


Proximal femur Trabecular bone Regional differences Microstructure Aging 


  1. 1.
    Martens M, Van Audekercke R, Delport P, De Meester P, Mulier JC (1983) The mechanical characteristics of cancellous bone at the upper femoral region. J Biomech 16:971–983CrossRefPubMedGoogle Scholar
  2. 2.
    Werner C, Iversen BF, Therkildsen MH (1988) Contribution of the trabecular component to mechanical strength and bone mineral content of the femoral neck. An experimental study on cadaver bones. Scand J Clin Lab Invest 48:457–460CrossRefPubMedGoogle Scholar
  3. 3.
    Delaere O, Dhem A, Bourgois R (1989) Cancellous bone and mechanical strength of the femoral neck. Arch Orthop Trauma Surg 10:72–75CrossRefGoogle Scholar
  4. 4.
    Passi N, Gefen A (2005) Trabecular bone contributes to strength of the proximal femur under mediolateral impact in the avian. J Biomech Eng 127:198–203CrossRefPubMedGoogle Scholar
  5. 5.
    Reich T, Gefen A (2006) Effect of trabecular bone loss on cortical strain rate during impact in an in vitro model of avian femur. BioMed Eng OnLine 5:45–55CrossRefPubMedGoogle Scholar
  6. 6.
    Verhulp E, van Rietbergen B, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:30–35CrossRefPubMedGoogle Scholar
  7. 7.
    Singh M, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52(3):457–467PubMedGoogle Scholar
  8. 8.
    Lundeen GA, Vajda EG, Bloebaum RD (2000) Age-related cancellous bone loss in the proximal femur of Caucasian females. Osteoporos Int 11:505–511CrossRefPubMedGoogle Scholar
  9. 9.
    Kawashima T, Uhthoff HK (1991) Pattern of bone loss of the proximal femur: a radiologic, densitometric, and histomorphometric study. J Orthop Res 9:634–640CrossRefPubMedGoogle Scholar
  10. 10.
    Lai YM, Qin L, Yeung HY, Lee KKH, Chan KM (2005) Regional differences in trabecular BMD and micro-architecture of weight-bearing bone under habitual gait loading—a pQCT and microCT study in human cadavers. Bone 37:274–282CrossRefPubMedGoogle Scholar
  11. 11.
    Meta M, Lu Y, Keyak JH, Lang T (2006) Young-elderly differences in bone density, geometry and strength indices depend on proximal femur sub-region: a cross sectional study in Caucasian-American women. Bone 39(1):152–158CrossRefPubMedGoogle Scholar
  12. 12.
    Nazarian A, Muller J, Zurakowski D, Müller R, Snyder BD (2007) Densitometric, morphometric and mechanical distributions in the human proximal femur. J Biomech 40:2573–2579CrossRefPubMedGoogle Scholar
  13. 13.
    Cui WQ, Won YY, Baek MH, Lee DH, Chung YS, Hur JH, Ma YZ (2008) Age-and region-dependent changes in three-dimensional microstructural properties of proximal femoral trabeculae. Osteoporos Int 19:1579–1587CrossRefPubMedGoogle Scholar
  14. 14.
    Lochmüller EM, Matsuura M, Bauer J, Hitzl W, Link TM, Müller R, Eckstein F (2008) Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J Bone Miner Res 23(12):1964–1973CrossRefPubMedGoogle Scholar
  15. 15.
    Li W, Kornak J, Harris T, Keyak J, Li C, Lu Y, Cheng X, Lang T (2009) Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone 44(4):596–602CrossRefPubMedGoogle Scholar
  16. 16.
    Issever AS, Vieth V, Lotter A, Meier N, Laib A, Newitt D, Majumdar S, Link TM (2002) Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial resolution MR imaging and multisection CT. Acad Radiol 9:1395–1406CrossRefPubMedGoogle Scholar
  17. 17.
    Da Paz LHBC, De Falco V, Teng NC, Dos Reis LM, Pereira RMR, Jorgetti V (2001) Effect of 17ß-estradiol or alendronate on the bone densitometry, bone histomorphometry and bone metabolism of ovariectomized rats. Braz J Med Biol Res 34(8):1015–1022CrossRefPubMedGoogle Scholar
  18. 18.
    Domrongkitchaiporn S, Sirikulchayanonta V, Angchaisuksiri P, Stitchantrakul W, Kanokkantapong C, Rajatanavin R (2003) Abnormalities in bone mineral density and bone histology in thalassemia. J Bone Miner Res 18(9):1682–1688CrossRefPubMedGoogle Scholar
  19. 19.
    Mellibovsky L, Mariñoso ML, Cervantes F, Besses C, Nacher M, Nogués X, Florensa L, Munné A, Diez-Perez A, Serrano S (2004) Relationship among densitometry, bone histomorphometry, and histologic stage in idiopathic myelofibrosis. Bone 34(2):330–335CrossRefPubMedGoogle Scholar
  20. 20.
    Tsangari H, Findlay D, Fazzalari N (2007) Structural and remodeling indices in the cancellous bone of the proximal femur across adulthood. Bone 40:211–217CrossRefPubMedGoogle Scholar
  21. 21.
    Baudoin C, Fardellone P, Sebert JL (1993) Effect of sex and age on the ratio of cervical to trochanteric hip fracture. A meta-analysis of 16 reports on 36,451 cases. Acta Orthop Scand 64(6):647–653PubMedCrossRefGoogle Scholar
  22. 22.
    Kannus P, Parkkari J, Sievänen H, Heinonen A, Vuori I, Järvinen M (1996) Epidemiology of hip fractures. Bone 18(Suppl 1):57S–63SCrossRefPubMedGoogle Scholar
  23. 23.
    Memon A, Pospula WM, Tantawy AY, Abdul-Ghafar S, Suresh A, Al-Rowaih A (1998) Incidence of hip fracture in Kuwait. Int J Epidemiol 27:860–865CrossRefPubMedGoogle Scholar
  24. 24.
    Löfman O, Berglund K, Larsson L, Toss G (2002) Changes in hip fracture epidemiology: redistribution between ages, genders and fracture types. Osteoporosis Int 13(1):18–25CrossRefGoogle Scholar
  25. 25.
    Morosano M, Masoni A, Sánchez A (2005) Incidence of hip fractures in the city of Rosario, Argentina. Osteoporos Int 16(11):1339–1344CrossRefPubMedGoogle Scholar
  26. 26.
    Lönnroos E, Kautiainen H, Karppi P, Huusko T, Hartikainen S, Kiviranta I, Sulkava R (2006) Increased incidence of hip fractures. A population based-study in Finland. Bone 39:623–627CrossRefPubMedGoogle Scholar
  27. 27.
    Truong LH, Kuliwaba JS, Tsangari H, Fazzalari NL (2006) Differential gene expression of bone anabolic factors and trabecular bone architectural changes in the proximal femoral shaft of primary hip osteoarthritis patients. Arth Res Ther 8(6):R188CrossRefGoogle Scholar
  28. 28.
    Thomsen JS, Ebbesen EN, Mosekilde L (2000) A new method of comprehensive static histomorphometry applied on human lumbar vertebral cancellous bone. Bone 27:129–138CrossRefPubMedGoogle Scholar
  29. 29.
    Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40CrossRefPubMedGoogle Scholar
  30. 30.
    Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19CrossRefPubMedGoogle Scholar
  31. 31.
    Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18:317–328CrossRefPubMedGoogle Scholar
  32. 32.
    Ding M, Odgaard A, Danielsen CC, Hvid I (2002) Mutual associations among microstructural, physical and mechanical properties of human cancellous bone. J Bone Joint Surg Br 84-B(6):900–907CrossRefGoogle Scholar
  33. 33.
    Whitehouse WJ, Dyson ED (1974) Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat 118(Pt 3):417–444PubMedGoogle Scholar
  34. 34.
    Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporosis Int 5:252–261CrossRefGoogle Scholar
  35. 35.
    Rudman KE, Aspden RM, Meakin JR (2006) Compression or tension? The stress distribution in the proximal femur. BioMed Eng OnLine 5:12–19CrossRefPubMedGoogle Scholar
  36. 36.
    Roux W (1881) Der zuchtende Kampf der Teile, oder die “Teilau- slese” im Organismus (Theorie der “funktionellen Anpassung”). Wilhelm Engelmann, Leipzig, GermanyGoogle Scholar
  37. 37.
    Wolff J (1892) Das Gesetz der Transformation der Knochen [The law of bone remodelling]. Springer, BerlinGoogle Scholar
  38. 38.
    Hert J (1994) A new attempt at the interpretation of the functional architecture of the cancellous bone. J Biomech 27(2):239–242CrossRefPubMedGoogle Scholar
  39. 39.
    Skedros JG, Baucom SL (2007) Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur. J Theor Biol 244:15–45CrossRefPubMedGoogle Scholar
  40. 40.
    Lovejoy CO (2005) The natural history of human gait and posture. Part 2. Hip and thigh. Gait Posture 21(1):113–124CrossRefPubMedGoogle Scholar
  41. 41.
    Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer-Verlag, BerlinGoogle Scholar
  42. 42.
    Kalmey JK, Lovejoy CO (2002) Collagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading? Bone 31(2):327–332CrossRefPubMedGoogle Scholar
  43. 43.
    Westerlind KC, Wronski TJ, Ritman EL, Luo ZP, An KN, Bell NH, Turner RT (1997) Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci USA 94:4199–4204CrossRefPubMedGoogle Scholar
  44. 44.
    Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135CrossRefPubMedGoogle Scholar
  45. 45.
    Fox JC, Keaveny TM (2001) Trabecular eccentricity and bone adaptation. J Theor Biol 212:211–221CrossRefPubMedGoogle Scholar
  46. 46.
    Judex S, Garman R, Squire M, Donahue LR, Rubin C (2004) Genetically based influences on the site-specific regulation of trabecular and cortical bone morphology. J Bone Miner Res 19:600–606CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang L, Cheng A, Bai Z, Lu Y, Endo N, Dohmae Y, Takahashi HE (2000) Epidemiology of cervical and trochanteric fractures of the proximal femur in 1994 in Tangshan, China. J Bone Miner Metab 18(2):84–88CrossRefPubMedGoogle Scholar
  48. 48.
    El Maghraoui A, Koumba BA, Jroundi I, Achemlal L, Bezza A, Tazi MA (2005) Epidemiology of hip fractures in 2002 in Rabat, Morocco. Osteoporos Int 16(6):597–602CrossRefPubMedGoogle Scholar
  49. 49.
    Lesić A, Jarebinski M, Pekmezović T, Bumbasirević M, Spasovski D, Atkinson HD (2007) Epidemiology of hip fractures in Belgrade, Serbia Montenegro, 1990–2000. Arch Orthop Trauma Surg 127(3):179–183CrossRefPubMedGoogle Scholar
  50. 50.
    Hedlund R, Ahlbom A, Lindgren U (1986) Hip fracture incidence in Stockholm 1972–1981. Acta Orthopaed 57:30–34CrossRefGoogle Scholar
  51. 51.
    Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, Hayashi K, Nakamura T (2002) Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parameters. Bone 31(3):351–358CrossRefPubMedGoogle Scholar
  52. 52.
    Holzer G, Von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474CrossRefPubMedGoogle Scholar
  53. 53.
    Manske SL, Liu-Ambrose T, Cooper DML, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20:445–453CrossRefPubMedGoogle Scholar
  54. 54.
    Yates LB, Karasik D, Beck TJ, Cupples LA, Kiel DP (2007) Hip structural geometry in old and old-old age: similarities and differences between men and women. Bone 41(4):722–732CrossRefPubMedGoogle Scholar
  55. 55.
    Looker AC, Beck TJ, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16(7):1291–1299CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marija Djuric
    • 1
  • Danijela Djonic
    • 1
  • Petar Milovanovic
    • 1
  • Slobodan Nikolic
    • 2
  • Robert Marshall
    • 3
  • Jelena Marinkovic
    • 4
  • Michael Hahn
    • 3
  1. 1.Laboratory for Anthropology, Department of Anatomy, School of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Forensic Medicine, School of MedicineUniversity of BelgradeBelgradeSerbia
  3. 3.Center for Biomechanics & Skeletal BiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Institute for Medical Statistics and Informatics, School of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations