Calcified Tissue International

, Volume 86, Issue 1, pp 14–22 | Cite as

Microarchitecture of the Radial Head and Its Changes in Aging

  • Matthias Gebauer
  • Florian Barvencik
  • Marcus Mumme
  • Frank Timo Beil
  • Eik Vettorazzi
  • Johannes M. Rueger
  • Klaus Pueschel
  • Michael Amling


Fractures of the radial head are common; however, it remains to be determined whether the radial head has to be considered as a typical location for fractures associated with osteoporosis. To investigate whether the human radial head shows structural changes during aging, we analyzed 30 left and 30 right human radial heads taken from 30 individuals. The specimens taken from the left side were analyzed by peripheral quantitative computed tomography (pQCT) and micro-CT. The specimens taken from the right elbow joint were analyzed by radiography and histomorphometry. In these specimens pQCT revealed a significant decrease of total and cortical bone mineral density (BMDto BMDco) with aging, regardless of sex. Histomorphometry revealed a significant reduction of cortical thickness (Ct.Th), bone volume per tissue volume (BV/TV), and trabecular thickness (Tb.Th) in male and female specimens. In this context, mean BV/TV and mean trabecular number (Tb.N) values were significantly lower and, accordingly, mean trabecular separation (Tb.Sp) was significantly higher in female samples. The presented study demonstrates that the radial head is a skeletal site where different age- and sex-related changes of the bone structure become manifest. These microarchitectural changes might contribute to the pathogenesis of radial head fractures, especially in aged female patients where trabecular parameters (BMDtr and Tb.Sp) change significantly for the worse compared to male patients.


Bone architecture/structure Bone density Quantitative computed tomography Osteoporosis Epidemiology Aging 



The authors acknowledge the support of Claudia Mueldner for excellent technical assistance in preparing the samples for qualitative and quantitative histomorphometry.


  1. 1.
    Herbertsson P, Josefsson PO, Hasserius R, Besjakov J, Nyqvist F, Karlsson MK (2004) Fractures of the radial head and neck treated with radial head excision. J Bone Joint Surg Am 86:1925–1930PubMedGoogle Scholar
  2. 2.
    Herbertsson P, Josefsson PO, Hasserius R, Karlsson C, Besjakov J, Karlsson M (2004) Uncomplicated Mason type-II and III fractures of the radial head and neck in adults. A long-term follow-up study. J Bone Joint Surg Am 86:569–574PubMedGoogle Scholar
  3. 3.
    Mason ML (1954) Some observations on fractures of the head of the radius with review of one hundred cases. Br J Surg 42:123–132CrossRefPubMedGoogle Scholar
  4. 4.
    Ikeda M, Sugiyama K, Kang C, Takagaki T, Oka Y (2005) Comminuted fractures of the radial head. Comparison of resection and internal fixation. J Bone Joint Surg Am 87:76–84CrossRefPubMedGoogle Scholar
  5. 5.
    Radin EL, Riseborough EJ (1966) Fractures of the radial head. A review of eighty-eight cases and analysis of the indications for excisison of the radial head and operative treatment. J Bone Joint Surg Am 48:1055–1064PubMedGoogle Scholar
  6. 6.
    Gebauer M, Rücker AH, Barvencik F, Rueger JM (2005) Therapy for radial head fractures. Unfallchirurg 108:657–667CrossRefPubMedGoogle Scholar
  7. 7.
    Brown SA, Rosen CJ (2003) Osteoporosis. Med Clin North Am 87:1039–1063CrossRefPubMedGoogle Scholar
  8. 8.
    Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 33:349–351CrossRefPubMedGoogle Scholar
  9. 9.
    Schneider P, Reiners C, Cointry GR, Capozza RF, Ferretti JL (2001) Bone quality parameters of the distal radius as assessed by pQCT in normal and fractured women. Osteoporos Int 12:639–646CrossRefPubMedGoogle Scholar
  10. 10.
    Amling M, Herden S, Pösl M, Hahn M, Ritzel H, Delling G (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Mineral Res 11:36–45Google Scholar
  11. 11.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2:595–610PubMedGoogle Scholar
  12. 12.
    Amling M, Hahn M, Wening VJ, Grote HJ, Delling G (1994) The microarchitecture of the axis as the predisposing factor for fracture of the base of the odontoid process. A histomorphometric analysis of twenty-two autopsy specimens. J Bone Joint Surg Am 76:1840–1846PubMedGoogle Scholar
  13. 13.
    Amis AA, Miller JH (1995) The mechanisms of elbow fractures: an investigation using impact tests in vitro. Injury 26:163–168CrossRefPubMedGoogle Scholar
  14. 14.
    Kimmel DB (1993) A paradigm for skeletal strength homeostasis. J Bone Miner Res 8:515–522Google Scholar
  15. 15.
    Ross PD, Wasnich RD, Davis JW (1990) Fracture prediction models for osteoporosis prevention. Bone 11:327–331CrossRefPubMedGoogle Scholar
  16. 16.
    Currey JD (2003) The many adaptations of bone. J Biomech 36:1487–1495CrossRefPubMedGoogle Scholar
  17. 17.
    Keaveny TM, Hayes WC (1993) A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115:534–542CrossRefPubMedGoogle Scholar
  18. 18.
    Eckstein F, Kuhn V, Lochmüller EM (2004) Strength prediction of the distal radius by bone densitometry—evaluation using biomechanical tests. Ann Biomed Eng 32:487–503CrossRefPubMedGoogle Scholar
  19. 19.
    Lochmüller EM, Kristin J, Matsuura M, Kuhn V, Hudelmaier M, Link TM, Eckstein F (2008) Measurement of trabecular bone microstructure does not improve prediction of mechanical failure loads at the distal radius compared with bone mass alone. Calcif Tissue Int 83:293–299CrossRefPubMedGoogle Scholar
  20. 20.
    Gebauer M, Lohse C, Barvencik F, Pogoda P, Rueger JM, Püschel K, Amling M (2006) Subdental synchondrosis and anatomy of the axis in aging. A histomorphometric study on 30 autopsy cases. Eur Spine J 15:292–298CrossRefPubMedGoogle Scholar
  21. 21.
    Rupprecht M, Pogoda P, Mumme M, Rueger JM, Püschel K, Amling M (2006) Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res 24:664–674CrossRefPubMedGoogle Scholar
  22. 22.
    Müller R (2003) Bone microarchitecture assessment: current and future trends. Osteoporos Int 5:89–95CrossRefGoogle Scholar
  23. 23.
    Gordon KD, Duck TR, King GJ, Johnson JA (2003) Mechanical properties of subchondral cancellous bone of the radial head. J Orthop Trauma 17:285–289CrossRefPubMedGoogle Scholar
  24. 24.
    Eckstein F, Jacobs CR, Merz BR (1997) Mechanobiological adaptation of subchondral bone as a function of joint incongruity and loading. Med Eng Phys 19:720–728CrossRefPubMedGoogle Scholar
  25. 25.
    Eckstein F, Muller-Gerbl M, Steinlechner M, Kierse R, Putz R (1995) Subchondral bone density in the human elbow assessed by computed tomography osteoabsorptiometry: a reflection of the loading history of the joint surfaces. J Orthop Res 13:268–278CrossRefPubMedGoogle Scholar
  26. 26.
    Koslowsky TC, Mader K, Brandenburg A, Hellmich M, Koebke J (2008) Subchondral bone density of the radial head measured with subtraction densitometry. Surg Radiol Anat 30:113–118CrossRefPubMedGoogle Scholar
  27. 27.
    Formica CA, Nieves JW, Cosman F, Garrett P, Lindsay R (1998) Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography. Osteoporos Int 8:460–467CrossRefPubMedGoogle Scholar
  28. 28.
    Grampp S, Lang P, Jergas M, Glüer CC, Mathur A, Engelke K (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual X-ray absorptiometry. J Bone Miner Res 10:1566–1576PubMedCrossRefGoogle Scholar
  29. 29.
    Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, McKay HA (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17:1241–1251CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Matthias Gebauer
    • 1
    • 2
  • Florian Barvencik
    • 1
    • 2
  • Marcus Mumme
    • 1
    • 2
  • Frank Timo Beil
    • 1
    • 2
  • Eik Vettorazzi
    • 3
  • Johannes M. Rueger
    • 1
  • Klaus Pueschel
    • 4
  • Michael Amling
    • 1
    • 2
  1. 1.Department of Trauma, Hand, and Reconstructive SurgeryUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Center for Biomechanics and Skeletal BiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Department of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Institute of Forensic MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations