Glucocorticoid-Induced Osteoporosis in Growing Mice Is Not Prevented by Simultaneous Intermittent PTH Treatment

  • Andrei Postnov
  • Tineke De Schutter
  • Jan Sijbers
  • Marcel Karperien
  • Nora De ClerckEmail author


Glucocorticoids (GCs) are widely used in medicine for treatment of chronic diseases. Especially in children, prolonged treatment causes growth retardation and early onset of osteoporosis. Human parathyroid hormone (PTH) has an anabolic effect on bone when administrated intermittently. The aim of the present study was to examine whether a combined therapy of dexamethasone (DEX) and PTH could prevent the detrimental effects of GC on cortical and trabecular bone in the femur and vertebrae of growing mice. Three-week-old female FVB mice were treated with control, DEX, PTH, or a combination of DEX and PTH by daily subcutaneous injections. After 4 weeks, animals were killed and the femur and L5 vertebra were isolated. Cortical and trabecular bone parameters and relative calcium density were measured by high-resolution X-ray micro-computed tomography (micro-CT). In the femur, PTH can reverse the effects of DEX on bone volume to control. However, it cannot reverse the undermineralization, which most likely is a strong contributor to bone fragility. In the vertebra, PTH improves bone volume to some extent but does not restore the values to normal. It augments the negative effect of DEX on mineralization. We conclude that the detrimental effects of DEX in the growing skeleton cannot be prevented by simultaneous PTH treatment.


Bone architecture/structure Osteoporosis Animal model Peptide hormone Parathyroid hormone Parathyroid hormone-related peptide 


  1. 1.
    Chrysis D, Ritzen EM, Savendahl L (2003) Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J Endocrinol 176:331–337CrossRefPubMedGoogle Scholar
  2. 2.
    Silvestrini G, Ballanti P, Patacchioli FR, Mocetti P, Di GR, Wedard BM, Angelucci L, Bonucci E (2000) Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone. Bone 26:33–42CrossRefPubMedGoogle Scholar
  3. 3.
    van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801CrossRefPubMedGoogle Scholar
  4. 4.
    Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD (1998) Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102:1627–1633CrossRefPubMedGoogle Scholar
  5. 5.
    Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282CrossRefPubMedGoogle Scholar
  6. 6.
    O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841CrossRefPubMedGoogle Scholar
  7. 7.
    Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328CrossRefPubMedGoogle Scholar
  8. 8.
    Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, Jilka RL, Parfitt AM, Manolagas SC (2002) Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 109:1041–1048PubMedGoogle Scholar
  9. 9.
    Canalis E, Delany AM (2002) Mechanisms of glucocorticoid action in bone. Ann NY Acad Sci 966:73–81CrossRefPubMedGoogle Scholar
  10. 10.
    Van Staa TP (2006) The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Calcif Tissue Int 79:129–137CrossRefPubMedGoogle Scholar
  11. 11.
    Balooch G, Yao W, Ager JW, Balooch M, Nalla RK, Porter AE, Ritchie RO, Lane NE (2007) The aminobisphosphonate risedronate preserves localized mineral and material properties of bone in the presence of clucocorticoids. Arthritis Rheum 56:3726–3737CrossRefPubMedGoogle Scholar
  12. 12.
    Alexander JM, Bab I, Fish S, Muller R, Uchiyama T, Gronowicz G, Nahounou M, Zhao Q, White DW, Chorev M, Gazit D, Rosenblatt M (2001) Human parathyroid hormone 1–34 reverses bone loss in ovariectomized mice. J Bone Miner Res 16:1665–1673CrossRefPubMedGoogle Scholar
  13. 13.
    Gittens SA, Wohl GR, Zernicke RF, Matyas JR, Morley P, Uludag H (2004) Systemic bone formation with weekly PTH administration in ovariectomized rats. J Pharm Pharm Sci 7:27–37PubMedGoogle Scholar
  14. 14.
    Yao W, Cheng Z, Pham A, Busse C, Zimmerman EA, Ritchie RO, Lane NE (2008) Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis Rheum 58:3485–3497CrossRefPubMedGoogle Scholar
  15. 15.
    Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, Dalsky GP, Marcus R (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–2039CrossRefPubMedGoogle Scholar
  16. 16.
    van Buul-Offers SC, Smink JJ, Gresnigt R, Hamers N, Koedam J, Karperien M (2005) Thyroid hormone, but not parathyroid hormone, partially restores glucocorticoid-induced growth retardation. Pediatr Nephrol 20:335–341CrossRefPubMedGoogle Scholar
  17. 17.
    Waarsing JH, Day JS, van der Linden JC, Ederveen AG, Spanjers C, De Clerck N, Sasov A, Verhaar JA, Weinans H (2004) Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone 34:163–169CrossRefPubMedGoogle Scholar
  18. 18.
    De Clerck N, Postnov A (2007) High resolution X-ray microtomography: applications in biomedical research. In: Tavitian B, Leroy-Willig A, Ntziachristos V (eds) International textbook of in vivo imaging in vertebrates. Wiley, London, pp 57–77Google Scholar
  19. 19.
    Rooman R, Koster G, Bloemen R, Gresnigt R, van Buul-Offers SC (1999) The effect of dexamethasone on body and organ growth of normal and IGF-II transgenic mice. J Endocrinol 163:543–552CrossRefPubMedGoogle Scholar
  20. 20.
    Smink JJ, Gresnigt MG, Hamers N, Koedam JA, Berger R, Van Buul-Offers SC (2003) Short-term glucocorticoid treatment of prepubertal mice decreases growth and IGF-I expression in the growth plate. J Endocrinol 177:381–388CrossRefPubMedGoogle Scholar
  21. 21.
    Mohan S, Kutilek S, Zhang C, Shen HG, Kodama Y, Srivastava AK, Wergedal JE, Beamer WG, Baylink DJ (2000) Comparison of bone formation responses to parathyroid hormone (1–34), (1–31), and (2–34) in mice. Bone 27:471–478Google Scholar
  22. 22.
    Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142:4349–4356CrossRefPubMedGoogle Scholar
  23. 23.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A1:612–619CrossRefGoogle Scholar
  24. 24.
    Postnov A, Vinogradov A, Van Dyck D, Saveliev SV, De Clerck NM (2003) Quantitative analysis of bone mineral content by X-ray microtomography. Physiol Meas 24:165–178CrossRefPubMedGoogle Scholar
  25. 25.
    Iwamoto J, Matsumoto H, Takeda T, Sato Y, Liu X, Yeh JK (2008) Effects of vitamin K2 and risedronate on bone formation and resorption, osteocyte lacunar system, and porosity in the cortical bone of glucocorticoid-treated rats. Calcif Tissue Int 83:121–128CrossRefPubMedGoogle Scholar
  26. 26.
    McLaughlin F, Mackintosh J, Hayes BP, McLaren A, Uings IJ, Salmon P, Humphreys J, Meldrum E, Farrow SN (2002) Glucocorticoid-induced osteopenia in the mouse as assessed by histomorphometry, microcomputed tomography, and biochemical markers. Bone 30:924–930CrossRefPubMedGoogle Scholar
  27. 27.
    Ikeda S, Morishita Y, Tsutsumi H, Ito M, Shiraishi A, Arita S, Akahoshi S, Narusawa K, Nakamura T (2003) Reductions in bone turnover, mineral, and structure associated with mechanical properties of lumbar vertebra and femur in glucocorticoid-treated growing minipigs. Bone 33:779–787CrossRefPubMedGoogle Scholar
  28. 28.
    Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446CrossRefPubMedGoogle Scholar
  29. 29.
    Fox J, Miller MA, Newman MK, Metcalfe AF, Turner CH, Recker RR, Smith SY (2006) Daily treatment of aged ovariectomized rats with human parathyroid hormone (1–84) for 12 months reverses bone loss and enhances trabecular and cortical bone strength. Calcif Tissue Int 79:262–272CrossRefPubMedGoogle Scholar
  30. 30.
    Oxlund H, Ortoft G, Thomsen JS, Danielsen CC, Ejersted C, Andreassen TT (2006) The anabolic effect of PTH on bone is attenuated by simultaneous glucocorticoid treatment. Bone 39:244–252CrossRefPubMedGoogle Scholar
  31. 31.
    Knopp E, Troiano N, Bouxsein M, Sun BH, Lostritto K, Gundberg C, Dziura J, Insogna K (2005) The effect of aging on the skeletal response to intermittent treatment with parathyroid hormone. Endocrinology 146:1983–1990CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrei Postnov
    • 1
    • 2
  • Tineke De Schutter
    • 1
  • Jan Sijbers
    • 3
  • Marcel Karperien
    • 4
  • Nora De Clerck
    • 1
    Email author
  1. 1.Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
  2. 2.Lebedev Physical InstituteMoscowRussia
  3. 3.Department of PhysicsUniversity of AntwerpAntwerpBelgium
  4. 4.Department of Tissue Regeneration, Biomedical Technology InstituteUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations