Calcified Tissue International

, Volume 85, Issue 3, pp 228–234 | Cite as

Serum Osteocalcin/Bone-Specific Alkaline Phosphatase Ratio Is a Predictor for the Presence of Vertebral Fractures in Men with Type 2 Diabetes

  • Ippei Kanazawa
  • Toru Yamaguchi
  • Masahiro Yamamoto
  • Mika Yamauchi
  • Shozo Yano
  • Toshitsugu Sugimoto
Article

Abstract

We examined whether or not BMD or bone markers were useful for assessing the risk of vertebral fractures in 248 Japanese men with type 2 diabetes. We analyzed the relationships between bone markers (osteocalcin [OC], bone-specific alkaline phosphatase [BAP], urinary N-terminal cross-linked telopeptide of type-I collagen) or BMD and HbA1c, urinary C-peptide, insulin-like growth factor-I (IGF-I), parathyroid hormone, 1,25(OH)2 vitamin D, and the presence of prevalent vertebral fractures. Multiple regression analysis adjusted for age, body height, weight, duration of diabetes, and serum creatinine showed that serum OC and OC/BAP ratio were correlated negatively with HbA1c (P < 0.01) and positively with IGF-I (P < 0.01). Multivariate logistic regression analysis adjusted for the above parameters showed that serum OC/BAP ratio was inversely associated with the presence of vertebral fractures (odds ratio = 0.695, P < 0.05). This association was still significant after additional adjustment for lumbar or femoral neck BMD. Our results suggest that poor diabetic control and lower IGF-I level are linked to impaired bone formation and resultant reduction in OC/BAP ratio in men with type 2 diabetes. The OC/BAP ratio could be clinically useful for assessing the risk of vertebral fractures independent of BMD in diabetic men.

Keywords

Osteocalcin Bone-specific alkaline phosphatase Type 2 diabetes mellitus Vertebral fracture Bone fragility 

References

  1. 1.
    Barrett-Connor E, Holbrook TL (1992) Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 268:3333–3337PubMedCrossRefGoogle Scholar
  2. 2.
    Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882PubMedCrossRefGoogle Scholar
  3. 3.
    Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561PubMedCrossRefGoogle Scholar
  4. 4.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRefGoogle Scholar
  5. 5.
    Lipscombe LL, Jamal SA, Booth GL, Hawker GA (2007) The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 30:835–841PubMedCrossRefGoogle Scholar
  6. 6.
    Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617PubMedCrossRefGoogle Scholar
  7. 7.
    Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of bone mineral density or diabetic complications. J Bone Miner Res 24:702–709PubMedCrossRefGoogle Scholar
  8. 8.
    Saito M, Fujii K, Mori Y, Marumo K (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523PubMedCrossRefGoogle Scholar
  9. 9.
    Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, Otani S (1998) Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22:17–23PubMedCrossRefGoogle Scholar
  10. 10.
    Botolin S, MacCabe LR (2006) Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem 99:411–424PubMedCrossRefGoogle Scholar
  11. 11.
    Gopalakrishnan V, Vignesh RC, Arunakaran J, Aruldhas MM, Srinivasan N (2006) Effects of glucose and its modulation by insulin and estradiol on BMSC differentiation into osteoblastic lineages. Biochem Cell Biol 84:93–101PubMedCrossRefGoogle Scholar
  12. 12.
    Verhaeghe J, Suiker AM, Nyomba BL, Visser WJ, Einhorn TA, Dequeker J, Bouillon R (1989) Bone mineral homeostasis in spontaneously diabetic BB rats. II. Impaired bone turnover and decreased osteocalcin synthesis. Endocrinology 124:573–582PubMedCrossRefGoogle Scholar
  13. 13.
    Gerdhem P, Isaksson A, Akesson K, Obrant KJ (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16:1506–1512PubMedCrossRefGoogle Scholar
  14. 14.
    Li YM, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, Limbert C, Seufert J, Kassem M, Schutze N, Jakob F, Ebert R (2007) Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun 363:209–215PubMedCrossRefGoogle Scholar
  15. 15.
    Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40:345–353PubMedCrossRefGoogle Scholar
  16. 16.
    Brenner RE, Riemenschneider B, Blum W, Morike M, Teller WM, Pirsig W, Heinze E (1992) Defective stimulation of proliferation and collagen biosynthesis of human bone cells by serum from diabetic patients. Acta Endocrinol 127:509–514PubMedGoogle Scholar
  17. 17.
    Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28:21–28PubMedCrossRefGoogle Scholar
  18. 18.
    Yamamoto T, Ozono K, Miyauchi A, Kasayama S, Kojima Y, Shima M, Okada S (2001) Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy. Am J Kidney Dis 38:S161–S164PubMedCrossRefGoogle Scholar
  19. 19.
    Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T (2007) The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 39:871–875PubMedCrossRefGoogle Scholar
  20. 20.
    Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S, Matsumoto T (1997) Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82:2915–2920PubMedCrossRefGoogle Scholar
  21. 21.
    Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442PubMedGoogle Scholar
  22. 22.
    Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J (1993) Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol Endocrinol Metab 265:E655–E659Google Scholar
  23. 23.
    Abrahamsen B, Rohold A, Henriksen JE, Beck-Nielsen H (2000) Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabet Med 17:124–129PubMedCrossRefGoogle Scholar
  24. 24.
    Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14:1622–1627PubMedCrossRefGoogle Scholar
  25. 25.
    Sugimoto T, Ritter C, Morrissey J, Hayes C, Slatopolsky E (1990) Effects of high concentrations of glucose on PTH secretion in parathyroid cells. Kidney Int 37:1522–1527PubMedCrossRefGoogle Scholar
  26. 26.
    Hanaire-Broutin H, Sallerin-Caute B, Poncet MF, Tauber M, Bastide R, Rosenfeld R, Tauber JP (1996) Insulin therapy and GH-IGF-I axis disorders in diabetes: impact of glycemic control and hepatic insulization. Diabetes Metab 22:245–250PubMedGoogle Scholar
  27. 27.
    Flyvbjerg A (1990) Growth factors and diabetic complications. Diabet Med 7:387–399PubMedCrossRefGoogle Scholar
  28. 28.
    Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996PubMedCrossRefGoogle Scholar
  29. 29.
    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2007) Serum insulin-like growth factor-I is associated with the presence of vertebral fractures in postmonopausal women with type 2 diabetes mellitus. Osteoporos Int 18:1675–1681PubMedCrossRefGoogle Scholar
  30. 30.
    Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2008) Combination of obesity with hyperglycemia is a risk factor for the presence of vertebral fractures in type 2 diabetic men. Calcif Tissue Int 83:324–331PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80:353–358PubMedCrossRefGoogle Scholar
  32. 32.
    Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019PubMedCrossRefGoogle Scholar
  33. 33.
    Thrailkill KM (2000) Insulin-like growth factor-I in diabetes mellitus: its physiology, metabolic effects, and potential clinical utility. Diabetes Technol Ther 2:69–80PubMedCrossRefGoogle Scholar
  34. 34.
    McCarthy TL, Centrella M, Canalis E (1989) Insulin-like growth factor (IGF) and bone. Connect Tissue Res 20:277–282PubMedCrossRefGoogle Scholar
  35. 35.
    Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K (1997) Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res 12:1272–1279PubMedCrossRefGoogle Scholar
  36. 36.
    Yamaguchi T, Kanatani M, Yamauchi M, Kaji H, Sugishita T, Baylink DJ, Mohan S, Chihara K, Sugimoto T (2006) Serum levels of insulin-like growth factor (IGF); IGF-binding protein-3, -4, and -5; and their relationships to bone mineral density and the risk of vertebral fractures in postmenopausal women. Calcif Tissue Int 78:18–24PubMedCrossRefGoogle Scholar
  37. 37.
    Raskin P, Stevenson MR, Barilla DE, Pak CY (1978) The hypercalciuria of diabetes mellitus: its amelioration with insulin. Clin Endocrinol 9:329–335CrossRefGoogle Scholar
  38. 38.
    Kawagishi T, Morii H, Nakatsuka K, Sasao K, Kawasaki K, Miki T, Nishizawa Y (1991) Parathyroid hormone secretion in diabetes mellitus. Contrib Nephrol 90:217–222PubMedGoogle Scholar
  39. 39.
    Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555PubMedCrossRefGoogle Scholar
  40. 40.
    Fujimoto WY (1996) Overview of non-insulin-dependent diabetes mellitus (NIDDM) in different population groups. Diabet Med 13:S7–S10PubMedCrossRefGoogle Scholar
  41. 41.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469PubMedCrossRefGoogle Scholar
  42. 42.
    Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ippei Kanazawa
    • 1
  • Toru Yamaguchi
    • 1
  • Masahiro Yamamoto
    • 1
  • Mika Yamauchi
    • 1
  • Shozo Yano
    • 1
  • Toshitsugu Sugimoto
    • 1
  1. 1.Department of Internal Medicine 1Shimane University Faculty of MedicineShimaneJapan

Personalised recommendations